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ABSTRACT 

A nondimensional design technique is developed to obtain the minimum 
weight cf structural components (columns, plates, and beams) subjected to an 
aerospace environment.   Design curves are developed and presented for vari- 
ous structural configurations in terms of the applied loads and geometric and 
material parameters which can be readily evaluated.   The design technique can 
be employed to obtain, in a relatively simple and rapid manner, preliminary 
estimates of the structural design weight as well as a good approximation to 
the final design.   The design procedure for minimum weight is illustrated for 
a truss-like spar and a wing section which are typical of aerospace structures. 
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SECTION I - INTRODUCTION AND SUMMARY 

The prime objective of a structural designer is to distribute structural 
material in such a manner that it can satisfactorily perform its assigned tasks for 
the life of the vehicle with minimum weight and reasonable cost.   His job has be- 
come more complex as the high performance characteristics required for aerospace 
vehicles have exposed the structures to loads at high temperatures for extended 
periods of time. 

At the inception of the design, the designer must make preliminary esti- 
mates of the structural design of the vehicle in order to estimate its weight and its 
effect upon the performance.   Methods of estimating the minimum weight must be 
employed before the design is finalized.   The designer must use his ingenuity and 
imagination to supplement the present state of the art in order to obtain preliminary 
designs of "optimum" structure for the contemplated load and environment history. 
This must be done in a relatively rapid and simple manner, considering all logical 
types of constructions and configurations. 

The design of a minimum weight structure is more complicated than its 
analysis.   An analysis of the strength of a structure can be readily performed when 
given the applicable equations, the geometry, and the material properties.   Given, 
however, the applied loads and material, it is a much more difficult task to deter- 
mine a structure which would withstand the applied load and be of minimum weight. 

A nondimensional approach has been employed in this report in order to 
make the design techniques applicable to the infinite possible variations in the ma- 
terial properties and geometric configurations.   The various possible environments 
and load histories make it mandatory to consider all materials with modifications 
due to the effects of temperature, time, and load since each environment is equiva- 
lent to creating a different stress-strain relationship.   The choice of the geometric 
configuration (area distribution) is also arbitrary and is usually determined by the 
designer after considering the applied loads and temperatures and the available 
materials.   In addition, many analyses are encumbered with empirical constants 
which may change with the material, temperatures, etc.   These considerations 
would make it impractical to develop design curves or to obtain adequate experi- 
mental data for each possible combination of environment, material, and geometry. 
The nondimensional technique presented in this report permits the designer to 
readily evaluate the effects of various modifications upon the minimum weight de- 
sign.   Such modifications as different materials, different environments, load mag- 
nitudes, changing empirical analysis constants or edge fixities can be considered 
utilizing the same design graph.   Design graphs will usually be required for each 
type of construction. 

Manuscript released by the author July 1962 for publication as an ASD Technical 
Documentary Report. 
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Nondimensional equations and graphs are developed to obtain the weight and 
cross-sectional description of minimum weight structures for a given load-tempera- 
ture history.   The solutions are expressed in terms of geometric and material para- 
meters which are readily determined from the known boundary conditions, type of 
construction, and the stress-strain curve of the material after the contemplated ex- 
posure.   Various criteria of structural adequacy or material behavior can be em- 
ployed to supplement the design procedure by modifying allowables or material para- 
meters. 

The design procedure for minimum weight is illustrated for a truss-like 
spar and a wing section such as may be employed in an aerospace vehicle.   The 
tension members are designed by an allowable stress which can be determined from 
such criteria as the short time static strength or the maximum creep strain.   The 
design of compression members must also consider optimum distribution of ma- 
terials for stability.   The unspecified dimensions of a cross section of a compression 
member are determined by solving a set of equations defining the load, the stability, 
and the minimum weight in terms of these dimensions. 

A compression structure can be visualized as a set of deformation springs 
in parallel and series.   The springs are in parallel if they have the same deforma- 
tion pattern (e.g. , bending and transverse shear).   The springs are in series if the 
deformation pattern can occur independently of each other (e.g., bending and local 
"wrinkling").   If the springs are in series then the structure becomes unstable when 
the applied load becomeo equal to the critical load for the weakest spring.   This 
critical load can be increased by a redistribution of the area of the cross section 
so as to increase the stiffness of the weakest spring.   This is usually done at the 
expense of reducing the critical loads of the stiffer springs.   The optimum distribu- 
tion of the area of the cross section occurs when the weakest springs are made 
equally stiff by a judicious selection of the unspecified dimensions.   This technique 
is sometimes described as the "one horse shay" approach. 

Various types of structures designed to withstand compression, shear, 
or bending loads are considered.   Columns with various types of cross sections 
(I-beam, channel, tee, angle, rectangular and circular tubes) are investigated in 
detail, although the technique is applicable to many more cross sections.   Design 
considerations for plate constructions such as solid plate,  corrugations,   stiffened 
plate, and honeycomb sandwich are also analyzed.   Bending of corrugation plate and 
beams is also investigated.   In addition, the effects of combined loadings upon the 
design are reviewed. 

This report is intended to provide a procedure for the preliminary design 
and weight estimation for a minimum weight structure.   The final weight will include 
construction details and design modifications for additional problems which are not 
considered here.   It is considered beyond the scope of this report to take into account 
the effects of fatigue and thermal stresses upon the minimum weight design.   The 
failure of the structure due to fatigue or thermal stresses is not sufficiently defined 
for design purposes.   In addition, the thermal stresses cannot be defined until the 
detail design is fixed. 

ASD-TDR-62-763 
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SECTION II - ANALYTICAL STUDIES 

A. TECHNIQUES 

The procedure to obtain a minimum weight design is fairly straightforward. 
There exist a number of equations which must be satisfied by the geometry.   In 
addition, there are subsidiary conditions which indicate the distribution of the 
cross-sectional area required to minimize the weight.   The design technique for 
structures in compression or shear is described below for columns in compression 
in order to aid in the visualization of the procedure.   This technique is equally 
applicable to plates and tubes in compression or shear.    The design technique 
for structures in bending is only slightly different and is best described in Part E 
of this section (Bending Members). 

1.       APPROACH 

The selection of a type of construction results in a number of unknown 
dimensions of the structural cross section that must be specified by the designer. 
As an example, the diameter (d) and wall thickness (t) of a minimum weight cy- 
lindrical column of a prescribed length (b) and end fixity (Cc) must be determined. 

The determination of these unknown dimensions requires the solution 
of an equal number of equations defining the geometry.    These equations can be 
characterized in the following manner. 

a. Load Equation (P= er A) 

The applied load is equal to the product of the allowable stress 
and the area of the cross section.   This basic equation is employed in designing all 
types of minimum weight cross sections and is sufficient to determine the cross 
section with one unknown dimension (e.g., solid plate, solid circular tube).   The 
buckling stress is employed as the allowable compressive stress since buckling and 
failure usually occur simultaneously in a minimum weight structure. 

b. Stability Equation 

The local stability stress of the cross section is made equal to the 
over-all stability stress of the structure.   This is the "one horse shay" design 
philosophy described previously.   Increasing the diameter of a circular tube, while 
maintaining a constant cross-sectional area, increases the column stability by in- 
creasing the inertia but reduces the local (wrinkling) stability by reducing the"t/d" ratio. 
The minimum weight design occurs when the ratio of diameter to column length 
"d/b" is a prescribed proportion of the thickness to diameter ratio "t/d".   This 
relationship and the applied load equation are sufficient to determine cross sections 
with two unknowns.   The value of the "t/d" ratio in terms of the "d/b" ratio is 
substituted into the load equation to obtain the load as a function of the "d/b" ratio. 
Cross sections of more than two unknown dimensions are designed in a similar 
manner by employing subsidiary conditions c. and d. described below, to represent 
the area and inertia of the cross section in terms of two characteristic dimensions. 
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c. Maximum Over-all Stability 

The relative distribution of the area in the flanges and webs of 
the cross section can be specified by considering the modes of over-all failure.   If 
the column can only buckle about one axis because of boundary restraints (e.g. , 
skins, webs, etc.), the minimum weight is assumed to be obtained when the inertia 
of the cross section about this axis is maximum, subject to the constraint that the area 
and the thickness  ratios are stationary.   If, however, over-all buckling is possible 
about both bending axes, then the equality of the buckling stabilities about each axis 
can be employed.   This would require that the inertias about each axis be propor- 
tional to the end fixities associated with the buckling about that axis.   Equations of 
these types can be employed to determine the ratio of areas (zrwh/dt) of the cross- 
sectional elements.   Cross sections of three unknowns (d, t, w), as exemplified by 
bent-up sheets where the ratio of the thicknesses (h/t) is known, can be designed with 
the above equations.   Caution, however, must be exercised, for cross sections in 
which the ratio of the thicknesses is specified, to select the proper characteristic 
dimensions of the cross section.   The characteristic dimensions must belong to the 
least stable of the elements of the cross section.   This would ensure that the failing 
stress would occur when the maximum over-all stability would equal the lowest of 
the local stability stresses»   For most cases investigated (summarized in Table 1) 
the "t" and "d" of the web are the characteristic dimensions of the cross section, 
since it satisfies the following inequality. 

(h/t)2 (Ch/Ct)1/2 > z 

d. Maximum Local Stability 

When the cross section is defined by four or more unknown 
dimensions, then the equality of the local stability of each of the elements of the 
cross section must be employed.   In addition, symmetry conditions which will max- 
imize the inertia and equalize local stabilities are utilized. 

Equations of the types described above are employed to obtain 
a relationship between the applied load and a characteristic dimension.   The solu- 
tion of this relationship for the geometry of the minimum weight structure would be 
quite simple if the material were linear.   Unfortunately, the minimum weight design 
almost always occurs at stress levels which are beyond the proportional limit of the 
material and thus a direct closed form solution is not possible. 

_ An inverse solution is employed in which a nondimensional load 
index (1^ and a nondimensional stability index (£) are equated to functions of the stress ratio 

_ /a   C>/c",     /EA
3/2\ 

(a/ *o).   The load index (e. g., P = (P)(   ö g
c     *)    [    *>2   ) for a flanged column) is 

*    b    ö-   '      * cr ' 1 o 
expressed in terms of the applied load (P), the known boundary conditions (C  , CJ 
and geometry (b, a^aj, and the material constants (EA, or ).   The stability index 

E .  *.   »2 
(e.g., y Ct — (-jj-J for a web) is expressed in terms of the material constants, 

the known boundary conditions, and the unknown dimensions of the cross section. 
The procedure is to assume a stress ratio, compute the stability and load indices for 
a given type of construction which correspond to the minimum weight design, and to 
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TABLE  1  - GEOMETRIC   FACTORS  FOR COLUMNS 

Section Defining 
Condition 

wh/dt A/dt      A/wt I/d3t I/w3t 

Thick. 
Ratio 

h/t (1) 

I-Beam 

T 

Ti J x 

t: 

l+4z      4+1/z 083+z       1.333 h/t 

Max I xx 

I   =1 xx   yy 
(3) 

I    =41 xx     yy 
(4) 

.083 

2.370 
.470 

.643 

.250 

1.333 

10.480 

3.584 

6.124 

8.000 

.167 

2.450 

.729 

.667 

.667 

.500 

.500 

Channel 

KM w 
t 

l+2z      2+1/z 083+. 5z   -667-^^ 

Max! xx 

I    -I xx- yy 
(3) 

I    =41 xx     yy 
(4) 

.167 

7.90 
1.366 

1.72 
.639 

1.333 

16.80 

4.44 

2.732 

3.565 

.167 

4.033 

.943 

.301 

.386 

1.000 

1.000 

Tee 

F 
[«■w-4 f 

l+2z      2+1/z ■ 333---ffz.667h/t 

Max! xx 

xxs yy 
(3) 

I    =41 xx     yy 
(4) 

.063 

.570 

.553 

.250 

.356 

1.125 

2.140 

1.500 

3.81 

4.81 

111 

.216 

.167 

.333 

.333 

.500 

.500 

(1) Unspecified h/t is defined by -y- = (z)l'2   (Ct/Ch)1/4 

Specified h/t is defined by sheet metal construction 
(2) X-axis and Y-axis are horizontal and vertical references axes, respectively, 

for all sections 
Ccv (3) -£2- = 1 (Eq.  13c) 

ex 
C 

(4) -gSY- - 4 (Eq.   13c) 
ex 
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TABLE  1  - GEOMETRIC  FACTORS  FOR COLUMNS (Cont'd) 

Section Defining 
Condition 

wh/dt A/dt      A/wt I/d3t I/w3t 

Thick. 
Ratio 

h/t (1) 

Max I xx 125 

1+z        1+1/z 

1.125 

333- .25 
1+z 

.111 .354 

An angle free to bend about any axis would not buckle about 
x  or y  axes. 

Square Tube 

K-d-H 

i 
+ i 

MaxIxx 

I    =1    <3> xx   yy 
ct =ch I    =41 xx     yy 

(4) 

.167 

1.000 

.090 

2+2z 

2.333 

4.000 

2.180 

167+.5z 

250 

,667 

,212 

.409 

1. 000 

.300 

Circular Tube 

7 
3.142 393 

h 1 /2 l/4 
(1) Specified h/t is defined by y- = (z)1'* (Ct/Ch) 
(2) X-axis and Y-axis are horizontal and vertical references axes, respectively, 

for all sections 
C 

(3) ^ = 1   (Eq. 13c) 
Ccx 

C 
(4) -&L r 4 (Eq.  13c) 

Ccx 
(5) Angle assumed to bend about x axis only 
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plot these relationships.    The design can then be determined by reversing the 
process.    For a given type of construction, load, and material, ajoad index 
can be computed.    The stress ratio can then be obtained from the P vs. crfar 

plot and the detail design and minimum weight can then be determined with this 
stress ratio.   The use of these nondimensional design curves results in a rela- 
tively simple and rapid method of designing a minimum weight structure and in a 
radical reduction in the amount of design data and aids required.    The effects of 
modifying end fixity, introducing empirical constants, and considering materials 
with various thermal exposures and loading temperatures, can be rapidly evalu- 
ated with the same graph. 

In addition, the detail design of a portion of a structure can 
sometimes be utilized to design other areas. If the structural arrangement is 
maintained over an area of the structure in which the temperatures and airload 
intensity are similar, then the detail design of one portion of the area will be a 
scale model of all the other portions. This is because the load index for a given 
material and temperature will be the same in all portions and will result in the 
same design stress and thickness ratios. 

The design technique is illustrated in the examples which 
follow (Section III).   The methods of obtaining the load and stability indices 
for various types of constructions are illustrated for the columns and summarized 
for plates, tubes, and bending members.    The evaluation of the geometry and 
material parameters is discussed in the remaining parts of this section. 

2.     GEOMETRv FACTORS 

The stability of a structure depends upon the type of construction, 
the detail geometry, the over-all geometry, and the edge fixity conditions.   The 
type of construction, the over-all geometry, and the edge fixity conditions are 
known to the designer, and must be employed to obtain the detail geometry.   The 
type of construction determines the form of the stability equation 

2 
(e.g. , 9 = C. ER (t/b)   for a plate), and coupled with the internal edge fixities, 

determines the relative distribution of the thickness ratios of the cross-sectional 
elements.    The over-all geometry (e.g., aspect ratio)   and the edge fixity de- 

/                    4 v^ termine stability constants f e. g. , C   = —s = 3. 62 for an infinitely long 
V 12(1-!/) 

simply supported plafe) .   The effect of the nonlinearity of the material is reflected 
in an effective stability modulus ER which is assumed to be defined knowing the 

end fixities.   The end fixities determine the ratio of bending and twisting energies 
of the structure and result in an expression for the effective modulus in terms of 
the secant (E„) and tangent (ET) moduli. 

Values of stability constants (or constants from which they can be 
derived) as well as expressions for the effective stability moduli in terms of 
the edge fixities and aspect ratios are readily available in the literature (e.g. . 
References 1 through 9).   A summary of such values can be found in References 
2 and 4. 
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3. MATERIAL FACTORS 

The stability of a structure is dependent upon the stress-strain re- 
lationship of the material.   When the material is linear then only the modulus (EA) 
is required to determine the stability stress (up to the allowable stress at which 
time the allowable stress governs).   In general, however, the design stress for 
minimum weight occurs above the proportional limit and recourse must be taken to 
employ the actual stress-strain relationship. 

The nondimensional approach recommends the use of a mathematical 
expression of the stress-strain relationship with three arbitrary constants (E,, or, 
ß).   This offers the widest latitude in matching the actual stress-strain curve while 
still being able to present single design graphs for each type of construction.   The 
nondimensional form of the stress-strain law is 

E   € 
= _  (1 -£)+£ sinho-/o-rt (la) 

*o        °o ° 

The formulation is based upon representing the nonlinear material deformations as 
an exponential function employing a rate diffusion model of deformations (Reference 
7).   The formulation is in good agreement with experimental data and has been em- 
ployed to approximate creep as well as instantaneous strains.   It can be readily 
adapted to computation techniques since the nonlinear component is a simple pro- 
duct of sinh ^/a-   (which need be tabulated only once) and£, rather than an odd power 
function, (which would require many tabulations) as is exemplified by the Ramberg- 
Osgood representation 

(lb) 
7      *7     7 \'7/ °".7 ~.7        '    \~.7 

The material constants are selected so as to match the initial por- 
tion of the stress-strain curve up to the area of interest in the design.   This would 
require matching the linear and nonlinear portions of the curve up to the vicinity of 
the yield stress.   Selecting E. equal to the initial slope of the curve matches the 
initial portion of the curve,   ine remaining constants o\ and/3 are selected to match 
the nonlinear portion of the curve.   One procedure is to plot the strain deviation 
(8s c -o"/E .) on a log scale versus values of the stress <p) on a linear scale (Fig- 
ure la).   This plot would result in a straight line for the plastic portion of the stress- 
strain curve if the formulation was exact.   Selecting values of a-  and ß which depend 
upon the best straight line would result in a good approximation to the actual curve 
with the error in the stress represented by the horizontal distance between an 
actual point and the straight line in the referenced plot.   The material constants o* 
andß are determined, after two points (^t^) and (°"2»^o) on ^e Dest straight line 
are selected, in the following manner: 

a2-Jl 
a 

o       2.3 log (ö2/6l) <lc> 
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Figure la.   Strain Deviation vs. Stress 

ASD-TDR-62-763 



and log ß = log 

= log 

282EA 

E 

o*o -cr-i 

2.3a 

■flog (4.68, (Id) 

0*2 -»i 
Requiring the approximation of the stress-strain curve to pass through 

two nonlinear points on the actual curve is equivalent to selecting the stress and devia- 
tion of these two points to establish the straight line.   As an example, if the .001 and 
.002 offset stresses are employed, then 

<r0 = 1.442<<r2-<r1) (le) 

and log ß =log ^)-»»-Ssg (If) 

results in a computed stress-strain curve  [Eq.(la)J   which passes through the yield 
stress (a2) and the . 001 offset stress (a.) and which has an initial modulus equal to E   . 

The Ramberg-Osgood Parameters (E.,  o"_, n) can be transformed 

to the above parameters (EA, a_,ß ) by making the curve pass through the same 
A        O 

control points (a7 and crft5)     This results in the following formulae: 

1 - ("85/ "7)' 

and 

0"    m 
O 

ß = 

Ln - 1 (.8878) 
T.l 

(3/7) ( <T7/cro) 

•  u° 7      ü 7 sinh _ii. -   „il 

(lg) 

(lh) 

where   o"   / <r   {S known or obtained from Figure 3b of Reference 4. 

Data available in various texts (References 10 through 19)were ana- 
lyzed to obtain the material constants and creep properties employed in the illustra- 
tive examples.   These constants (Figures lb, 2 and 3) should not be viewed as the 
best values for the materials investigated but rather as values to be employed in 
illustrating the design technique.   Variations in the material constants,obtained from 
different tests, occurred because of variations in the stress-strain curves for the 
same material and temperature.   The scatter was more severe with the higher 
temperatures and newer materials which are now being developed.   Fortunately, the 
design stress and minimum weight are not too sensitive to variations of the nonlinear 
material constants {a  and/3).   Engineering judgement was employed in obtaining the 

material constants for the illustrative examples. 

A statistical analysis of all available data is recommended to obtain 
the most probable values of the material constants and to estimate the effects the 
variations have on the design stresses and weights in an actual design. 
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An estimate of the effect of thermal exposure upon the material 
constants can be obtained by noting the effect of the exposure upon the yield stress. 

If =   x <r 

and assuming A       A 

the following approximations result: 

O"       = 
O 

and ß    -   0/x 
log£   =   logß- log x ~ logß 

Primed constants refer to exposed material whose yield stress is x times the unex- 
posed yield stresses.   Values of x can be estimated from master "Larson-Miller 
Strength after Exposure" plots as exemplified by Figure 3a. 

B. COLUMNS 

The calculations required to determine the load and stability indices are indi- 
cated in some detail for some column cross sections of up to 4 unknown dimensions. 
The results for other column cross sections, plates, and tubes can be obtained in a 
similar manner and are summarized in Table 1 for columns and in the appropriate 
sub-sections for some piate constructions and tubes. 

The design_would be obtained by computing the load index, determining the 
stress ratio from a P vs. a/<rQ plot, and determining the detail geometry from both 
{ vs. °"/<r   plots and the appropriate equations indicated below. 

1. ONE UNKNOWN DIMENSION 

Example - Solid circular column 
using load equation 

Load Equation 

T 
b 

1 

hdH 

P = ACT (2a) 

Let   V <%>/<ET/EA> (Fig. 4) (2b) 

where values of the stability index (£ ) as a function of the stress ratio (c/a ) are c o 
plotted in Figure 4 for various values of logß . 

But o- =  C   Er (b) (2c) 
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Where C   is the end fixity of the column.   Substituting Eq.  (2c) into Eq.  (2b) results 

in the stability index as a material-geometry parameter, giving 

E 

•c «--16 &)«>■-«.£(«' 
where C. = C   (I/Ad2) = C /16 

Q C -        C 

and d -<; 
c "o 

,Cc    0 
1/2 

is obtained from Eq.  (2d). 

From Eqs. (2a) and (2d) we obtain 

bV -(+)(■£)(*)-(+) M G) 

(2d) 

(2e) 

(3) 

Rearranging terms so that the left-hand side of the equation is devoid of stability 
index and stress ratio terms, results in the following expression for the load 
index: 

H±) wm-«. (t) (4) 

This load index was not plotted since it was not deemed to be of sufficient interest in 
design and is only employed to illustrate the computing techniques to obtain load- 
material-geometry parameters (P) and material-geometry parameters (f) that can 
be expressed as functions of the stress ratio (a-/ <r ). hH 

2. TWO UNKNOWN DIMENSIONS 
> 

Examples - Circular or square tubes using 
stability and load equations. 

Stability Equation 

a  =* 
P     c 

Setting the local stability equal to the over-all 
stability results in 

*=ctER(-d-)n = cc Er 
I 

Ab' 

(5a) 

(5b) 
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where C. and n are constants determined by the geometry. 

Let n = 1 

and ER=/E7EIT     for a circular tube (Reference 6) 

Let n = 2 for a plate-like element 

(6a) 

and E    = .428 + .572      .25 + .75 
Er 

Er (6b) 

This is an average value for plates with various boundary conditions (See Table 31 
and Fig. 176 of Reference 2). 

Let A =a   dt ; (a   = w for a circular tube) (7a) 

and I=a.d t;(o„=ir/8 for a circular tube) (7b) 

Substituting Eqs.  (7a) and (7b) into Eq.  (5b) results in 

*-CtER(i)n = CcET    ajLA=CdET(£)2 (Sa) 
a- dtb 

where        C . = C  —0 = — C d       cAd2      ax     c 

Rearranging Eq. (8a) results in 

1 _ 
d " 

C,      E 

"R C.       E„     \ b I 

1/n 

(8b) 

(9) 

Load Equation   (P = ACT) 

Employing the load equation with Eq.  (7a) results in 

P = a l dt <r 

Putting the equation in nondimensional form and substituting Eqs.  (9) and (3) results in 

1/n 
P        _ a      d2   _t_    _a a      ^c °o 

b2 <r X    b2     d     *o     '    X    °d *4 
Si   fl£c_% 
Ct    ER   Cd   EA O 
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Placing only stress ratio functions on the right hand side of the equation results in the 
load index 

TT  r ,r   v   v1/n x +TT    / F    x1/" 

b2<x      %al \     *o   I ™ \ER) 
(10) 

°b 

The following design equations result for columns with rectangular plate elements 
<n = 2). 

b2     (°o)5/2      «1      V  * b2 "o5/2     ^ 

^3/3     (J^l/2    ^)=CcCl/p2^ (na) 

This equation is plotted in Figure 6 for various values of logß. 

£c_!o_\1/2    --     / ifi^e    alV/2 
cd ^i 

C„   <r   \l/2 

d b HTO     "b \ C
C
E

A °17 (llb) 

-<(n) (lie) 

E 2 
where C      =   (cr/a,) / (ER/EA)  - Ct   -*  (±)        (Fig. 5) (lid) 

For a circular tube (n = 1), 

P = -Z.     ^A_      CdCt   = _P_     ^A_ M  °*°'-<&& (*> b2        a3 al b2       <r3    a, o o 1 

/€   <r    \V2 /{    ,        a   \l/2 

(12a) 
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t =d 
(Ct EA)  WEA 

_d(^o^c) 
1/2 

"^A 
(12b) 

3. THREE  UNKNOWN DIMENSIONS 

Examples - Sheet metal channels, angles, etc. , 
using maximum over-all stability and stability 
and load equations. 

Maximum Over-all Stability (Ccx 1^ = Ccy Iyy) 

(Equal stability about both bending axes) Y 

Evaluating the inertias of the channel about both axes results 
in the following: 

Ixx=Xd3t  +  w^=d3t     (_L     +_W_) 

= 24+2(wt)(ff. %i^ü2 

= 1   w3t .    w + t   m    3   /_2. _  1       \ 
3    w l      2w + d       w l \ 3       2 + d/w / 

(13a) 

yy 

(13b) 

For equal stability, 

Ccx Xxx = Ccy ryy (13C) 

where C     and C     are the end fixities for buckling of a column about the x and y 

axes, respectively. 

Substituting Eqs. (13a) and (13b) in Eq.  (13c) results in 

*-*&**)'%* (i-rfai) 
Let   -j - y = z   (t/h) (13d) 

n 
1        y 3  (     y + 2 \t   cy    \ 

• •        12  +    2   =   y     U(2y+ 1>A Ccx    I <13e> 

If     -^^- = 1, solving Eq.  (13e) results in y = 1.366 
ex 
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Since A = dt + 2 wt = dt ( 1 + 2-j ) = dt (1 + 2 y) (14) 

we obtain the coefficients which reduce this design to one with two characteristic 
dimensions similar to that described in the previous section.    From Eqs.  (14) and 
(13 a) we obtain 

ald«(l + 2y) =       3.732 

a3d = (n +i)   ~     -766 

The detail design would be determined by employing Eqs. (11a), (lib), 
(lie), and (13a) provided that the web is most critical. The criteria for determining 
when the web is most critical is obtained as follows: 

W£)2 >- ct H(k) 

*■ * (VCJ1/2 HF) 
wh Substituting z = -rr-   results in 

2 

(T) 
,/V5t * z <15> 

The value of C,  can be increased, if desired, by adding a bead or reinforcement to 

the flange.   This criteria is not satisfied in sheet metal construction with free flanges 
which can buckle about both axes.   It is satisfied for all sections when buckling can 
occur about the X-axis only (see Subsection B. 4).    For the case illustrated, the 
flange is more critical than the web since, from Eq.  (15), 

(if (V°t)1/2 -(-rH2)172 = —A - H22 -1.« 
From Eqs. (14) and (13a) we obtain 

A=wt(-i    +2)=wt  (~   + 2)   =    2.732wt   =  alw wt 

I=wMi-2TT77)= -301w3t= a3w w3t 

This results in similar expressions for the design using w as the characteristic 
dimension, i.e. , 

3/2 

»-(*   (^571)   &) (oj  K) 1/2 (-a) 
o 1 
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w   = 

t = 

d   =    w/y 

(16b) 

(16c) 

(16d) 

Values of z, a ld, ora.    , and a „ , or a _    for various cross sections with 

C    /C     equal to 1 (i.e., I     = I    ) and 4 (i.e. , I    s  41   ) are presented in Table cy    ex   M v       ■   xx      yy' xx        yy' 
1.   Note that the design procedure is identical to that described in Sub-section 2 
except that the geometry constants (a..   , a „   , and C,) are employed to solve for w 

rather than d. 

4. FOUR OR MORE UNKNOWN DIMENSIONS 

Example - Extruded or machined channels, etc. , 
using symmetry, maximum over-all stability, 
and the stability and load equations. 

^-■-fi 
Symmetry (Equal stability and max. I) 

wx - w2 = w 

hx = h2=h 

X- 

Maximum Over-all Stabilit Maximum Uver-all staDUity 
(Maximum inertia f I   1   about only bending axis) 

A = dt + 2 wh = dt (1 + 2z) 

i=-Ld3t + 2wh(-£)2 =d3t fJT+^/a) 

u wh where  z —-gr 

i. 

TZ 

\r~ w2—►! 
l-7a) 

(17b) 

(17c) 

To determine the mass distribution which will maximize I for a stationary A and t/d 
ratio, we first determine the relationship which makes the A and t/d ratio stationary 
for an incremental change in z. 

(-•a-H*-) 

ASD-TDR-62-763 24 



Since   8A = S[(t/d)(d2)(l + 2z)] = 0 
Sz g z 

it follows that 

_|A = *m [d2(1+2z)] +||!(j_)(1 + 22)+(i) (d2)(2)= 0 

but for maximum stability of element 

8 (t/d) 
8 z 

= 0 

8d2 

8z 
(1 + 2z) 

8d2 

d2 

Sz 
1 + 2z 

log d2 = - log (1 + 2z) + c 

log d2   (1 + 2z) = c 

2 c d   (1 + 2z) = e = constant for stationary area (18b) 

For maximum over-all stability, the incremental change in I for a change in z should 
be zero. 

J(e C) (t/d) (1/12 + z/2)1 

B± _      S[(d4) (t/d) (1/12 + z/2)J [       (1 + 2z)2 J = 0 (18c) 
8z 8z " 8Z 

This results in 

(1 + 2z)2 (1/2) - (1/12 + z/2) (2) (1 + 2z) (2) _ Q 

(1 + 2z)4 

and       1/6* z (18d) 

Substituting in Eqs.  (17 a) and (17b) 

a 1  =1 + 2z = 1.333 (Table 1) (18e) 

a 3 = j^- + z/2 = . 167      (Table 1) (18f) 
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Utilizing the equal stability of elements (provided the h/t ratio is not specified) 
results in 

A- =   (t/d) (Ct/Ch)1/2 (19a) 

but from Eq.  (17c) h = z-^- (19b) 

.-. -^j = (t/d) (Ct/Ch)l/2 

w 

and    w = d(z)1/2   (Ch/Ct)1/4 <20a> 

Similiarly, 

h =   t (z)1/2   (Ct/Ch)1/4 (20b) 

Values of z, a-, o„, and h/t are presented in Table 1 for typical machined or sheet 

metal sections. 

The above analysis is for a column which can only buckle about one axis, and 
can be applied to sheet metal constructions as well as machined sections. The value 
of z which optimizes the cross section does not change.   Thus values of a    and a„ 

can be determined even when the thickness ratio is specified as in sheet metal con- 
structions.   All the sections summarized in Table 1 for sheet metal construction which 
can bend about the x axis, only, satisfy the criteria of Eq. (15).    Thus the web is the 
critical element and Eqs. (11a), (lib), (lie), and (13d) define the detail design.   The 
case of a machined section with unspecified h/t ratio need not be investigated as to the 
characteristic dimensions since the criteria of Eq. (15) is automatically satisfied by 
Eqs.  (20a) and (20b) which results in the web and flanges being equally stable. 

C. PLATES 

The basic difference between the column and plate is the restraint in the trans- 
verse direction due to the Poisson's ratio (v) and the edge fixities of the unloaded sides. 
If the unloaded ends are free, then the plate acts as a column with the bending stiffness 

2 
increase by a factor of the order of 1/(1-"  ).   If the unloaded ends are restrained and 
the aspect ratio is significant (a/b> 1) then the width of the plate, rather than the 
length, becomes the characteristic buckling dimension (b) which determines the sta- 
bility.   It cannot, in this case, be treated as parallel columns. 

Many types of plates can be fabricated.   This report will consider a limited 
number of such types of construction.   The unreinforced plate, the corrugated plate, 
the integrally stiffened plate, and the sandwich plate constructions will be examined. 

The sandwich plate differs from the others in structural design in that the 
stability stress can be assigned and the plate designed so as to attain this stability 
stress.   The other constructions require the determination of the "optimum" stress 
level which will provide the minimum area to resist the applied load.    A lower sta- 
bility stress would require more area to withstand the load and would weigh more 
than the minimum weight.    A higher stability stress cannot be obtained without in- 
creasing the area or taking it away from one element to increase the stability of 
another which will decrease the controlling stability stress. 
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The sandwich construction has the design characteristic described above be- 
cause it employs a core which does not resist the applied compression load.   The 

2 
sandwich construction is very efficient for low load intensities (P/b  <r ),where the 

built-up constructions have low "optimum" stress levels, but it becomes less efficient 
than built-up constructions as the "optimum" stress increases to the order of the 
stress in the sandwich construction.   Corrugations, and then reinforced panels, 
approach higher optimum stresses at lower load intensities than the unreinforced 
plate.   The shear deformation due to axial load is relatively small for non-sandwich 
type constructions and its effect upon the stability is ignored except for the sandwich 
construction.   It should be noted that non-structural details necessary for these 
various types of constructions may overshadow the difference in the minimum weight 
designs. t ^ b 

1.   UNREINFORCED PLATE 

The unreinforced plate contains 
only one unknown dimension, the thick- 
ness "t". Employing the load equation, 
we obtain. 

P=A(T 

= tb<r (21a) 

Dividing Eq. (21a) by b   er , to make the equation nondimensional, results in 

b2*~( b) (/ ) o o 

(21b) 

Since <r = Ct   ER (^-)   , where Ct —r- +  J    for simple supported 
12(l-y2)   V nb 

ends (see Table 36 of Reference 2 and Figures 14 to 20 of Reference 4 for values of 
1.08 Ct), 

we obtain t    m (<r/a0)/(ER/EA> _        «A   / t \ 
t    ff \  D / did) 

■nd  iv~v^" (lie) 
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Substituting in Eq.  (21b) results in 

^7 = ("*Nr)   fe 

.-. p --? 
b2<r o 

and from Eq.  (lie) 

(AfA)1'2. {(ff (t)(FI,., (22a) 

-»« 
«p°o \1/2 

EA/ 
(22b) 

A plate in shear can be handled in a similar manner, i.e. , 

Q= AT  =tbr 

o b   <r "(i)     £) 

but r=cr   ER(-£) 

TT2 / 4K2\ where CT^ 5-      [5. 34 + ^~ jfor simple supported sides (See Eqs. 735 and 736 
12 (lV)      \ a

2/ 

of Ref 2).   Assuming an invariant octahedral stress-strain law results in the trans- 
formation 

/Js~ [Eq. 739 of Reference 2 and] 
LSection 3 of Reference 7     J 

r=     cr 

and   y=   2<1+y>« 

This is employed to obtain the shear stress-strain curve from the uniaxial stress- 
strain curve and results in 

Cp = W<ro)/(ER/EA) = (r/T/ ^/(E^E^TF  Cr(-^-)(i) 

t=b P   o 

yjcT EA 

„    /Tä cT E. \1/2        .  
a„dP=     Q      f      T    A)      = 7T 

b2<r     V           *o     / p - ■ ^(v)(F1S-8| 
0" 
F 
o 

(23a) 

(23b) 

(24) 
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Thus the same design graph can be employed.   It should be noted that the use of the 

design graph would result in solutions for-I^-— rather than r /<r   and that the aver- 
°b ° 

age En used for plates in compression was employed. R 

2. CORRUGATED PLATE 

Plate construction consisting of 
corrugations must be considered as orthotropic 
plate in that the cross-sectional properties vary 
in different directions.   The bending stiffnesses 
of the corrugated plate about axes parallel (D   ) 

and perpendicular (D    ) to the longitudinal axis 

of the corrugations are not difficult to determine. 
The torsional stiffness is more difficult to 
evaluate.   It is assumed that the torsional stiff- 
ness (GI   ) is associated with the weaker of the 

two bending stiffnesses, [i.e., D     = 1/2 {v_. D 

d/tan 0 

xy yy 
+ i/    D    ) + 2 GI y   xx' xy 

can be approx- 

imated by D     (see Eq. 203 of Ref. 1)] .   This is a good approximation for corrugated 

plate with two faces (almost isotropic) since the torsional stiffness of a multicellular 
box is approximately equal to the enveloping box.   In the case of one or no faces, the 
torsional stiffness can be viewed as two springs in series (since the torsional moment 
must be taken in both directions).   Since the stiffness of the weaker spring is a good 
estimate of the stiffness of the two springs in series, we again conclude that D   ~D    . xy     yy 

The corrugated sandwich shown in the sketch above has as many as five 
unknown dimensions.   The variables Q and nd are not always at the discretion of the 
designer but may be particularized because of fabrication requirements.   Discrete 
corrugation angles Q and minimum flats (nd) for joining may be specified to the de- 
signer who must consider these details when he seeks to obtain a minimum weight 
design.   The type of design equations employed for the column still apply, however, 
and are utilized. 

From specified values of n and Q and employing equal stability of the 
elements, it is possible to express the area and inertia about both axes in terms of 
two characteristic dimensions, "d" and "t".   Employing the load and stability equa- 
tions described in Paragraphs a. and b. of Subsection II-A-1, it is then possible to 
develop design graphs.   The double-faced corrugation panel must be considered 
separate from the single-faced and no-faced corrugations because of a difference in 
form of the over-all stability equations.   The values of the geometric constants which 
express the area and inertia will be presented in terms of n and Q .   Methods of ob- 
taining the best values of n and Q will be discussed in the Appendix. 
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a. Double-Faced Corrugations in Compression 

The local stability of the face and corrugation web elements is em- 
ployed to obtain a relationship between the face and corrugation web thicknesses. 
It is assumed that the flat is sufficiently small so as to be more stable than the web. 

Values of VCjcl     of 1 (equal end fixities) and of 1.14 (obtained from Figure 5a of 

Reference 20 in which moment distribution was employed) are recommended. 

(v2 2 

2 (nd id/tang))^ Ct ER fafe») = *t (25a) 

then -~ = 2 (n sin 9 + cos 6) <s/GJCf (25b) 

The geometry can then be expressed as 

Ax/in.» ax t (26a) 

I^/in.-a 4 t d 2 (26b) 

Iyy/in.« a 5 t d 2 (26c) 

Where ai2c = n sin 11 cosg +   4 (Ct/Cf ?'* <n sin 0 + cos 0> <26d> 

(n/4) sing +1/12    +    /c /Q \l/2        gin     + CQ 

42c n sin Q + CQSQ \  t     f/ v w ' x      ' 

and       a 52c
=^Ct/Cf    (n sin 0 + cos 0) (26f) 

where a       g= Geometry factor for double faced corrugations in compression. 

Employing over-all stability equations such as found in Reference 8 and 
in Eq. 233 of Reference 1, and equating this stability to the local stability of the cor- 
rugated web, we obtain, noting that A, D, and I are per inch of width, 

2 2 wherek= K(l-i/ )~ 2w    for simple supported plate of infinite aspect ratio (See Ref- 

erence 8 for other boundary conditions).   Substituting Eqs.  (26) into Eq.  (27a) and 
equating this to the local stability results in 

KER(^    +M 2 2 

\b)    ~ ut ^R \d/sinö/       t (27b) 
o-    = 

P a, 
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Solving for d/b, we obtain 

-g- = (sine) 
Ct   »1 

1/2 

K(A^+a
5) 

(*) 
(27c) 

From the load equation (P = <r A b), we obtain 

b2> ■WW-W(4-)-H (f)(f)(^   « 
Substituting Eq.  (27c) in Eq.  (28a) we obtain 

b2^ 
o 

1/2 

1 \K</a4a5    +a5>/       Vd/\^0/ 

but 
9 €      * 

(t/d)2- P      ° 
Ct    EAsin Ö 

(28b) 

(28c) 

and manipulating Eq. (28b) results in 

M^^)F^r-£,(t)-'> (28d) 

The detail geometry is as follows: 

cr 
d=b 

i + a
5) 

1/2 

1/2 

sinö\ ctEA; 

f = 2 t (n sin Q + cos0 )-/ct/Cf 

(29a) 

(29b) 

(29c) 

The manipulation of Eq.  (28a) could as easily have resulted in an expression of the 
load in terms of the "d/b" ratio rather than the "t/d" ratio.   The technique employed 
was to obtain results similar to those with less than two faces where the plate stress 
can not be expressed directly as a function of "d/b" ratio; see Eq.  (33b). 
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b. No Faces or Single-Face Corrugations In Compression 

For these types of construction, the following cross-sectional prop- 
erties apply: 

A =a1 t (30a) 

Ixx= a4td2 (30b) 

I    ■ a    t3 (30c) yy       5 v     ' 

I    »   I (30d) xx         yy x      ' 

Equation (25b) applies to the "f/t" ratio for single-face corrugations 
and is not needed for the case of no faces since f = 0 is no longer an unknown dimen- 
sion. 

For one face, we obtain 

ailc=  n slnf t cos g   +2 ^V^f    (n-infl+oos«) (31a) 

«      _ (n/4) sin g + 1/12 +     <1/2> ^Fi <" sin 9 + *> 
41c       n sin Q + cos Q a n (31b) 

and 
a
51o

=^T     l + 2v^7cf    (nsin0 + cos0) (31c) 

For no faces, we obtain 

KED(v^     T +1     ) KED •/!     f R\      xx  yy      yy /       ^ R        xx  y =  " -      - // ^-     - R        ™  yy (33a) 
P bZ A b2 A 
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a n sin § + x /32a^ 
10c~  n sin 0 + cosfl w    ' 

a      _   (n/4) sin g + 1/12 
40c       n sin Q + cos Q w    ' 

and a5o = T^ <32o> 

where   a        —Geometry factor for single faced corrugation in compression. 

The larger inertia about the x axis is employed to simplify the over- 
all stability equation 



nR       4    5 t d /QQM 
• ■    % —    -j <33b> 

Employing equal stability to evaluate d/b in terms of t/d results in 

4     5 

From the load equation (P = cr A b), we obtain 

/K>/ä~ä sinfl\l/2      /C   E    \3/4 3/4 P = "77 (—7^~)     vk^>   -'» {<r/^iFig'10) (35) 

and the following formulae for the detail geometry: 

1   -^ 

Ctal sing y/2^££^_y/4 

V5^ 
/£      o-   \l/2 

t«(d/sinö) f C
P
E ° j (36b) 

f = 2 t (n sin 0 + cos0 ) -/c^TcT (36c) 

c.     Corrugation Panels in Shear 

Corrugation panels in shear require a somewhat more complicated 
approach.   The stability of a corrugation panel in shear is not as well defined as in 
compression.   Equation 235 of Reference 1 is employed to define the stability in shear. 
In addition, the area of the corrugated web is not as efficient as the faces in carrying 
the shear load.   The shear strain (and therefore stress) in the corrugations must be 
smaller than that in the faces.   This is because the deformations from node to 
node, which join the faces to the core, must be equal to ensure compatibility of the 
assembly but the load path from node to node is longer via the corrugation web than 
via the face.   For this reason the corrugation web can be made to buckle at a lower 
stress than the faces.   The relationship between the faces and core is obtained by 
making the faces and webs buckle simultaneously when the stresses are properly dis- 
tributed. 

To obtain the f/t ratiofuse is made of the compatibility equation 

y{ (nd + d/tan 0) = y t (nd + d/sin 6) (37a) 

resulting in IlB   l^lLt <37b> 

ASD-TDR-62-763 35 



m 
O 

0> -)-> a ^ 
& 
o *• •<-* 

o 9* o 
4-> 

g 
!>° § 

m   a. * 
V# 0> 
it d 

10- t-H 

o 

1 
X 
LÜ 
Q 
Z 

■s o 

~~ en 
Q > 
< o 
O '+-> 
-J a 

W 
CO 
CO 
Q) 

CM 

O 

CO 

2 I 
fa 

in o m O in O 
sf <* ro ro 00 i\J 

m m 

-O/.O-0I1VU   SS3dlS 

ASD-TDR-62-763 36 



The simultaneous instability criteria yields 

Tf -    °f ER   U (nd + d/tan g)]   _   Cf      I" 1 ,f J ,™ 
"77 ~    C4 E„      /     t       \2 "   C+      l2(nsin0 + cos 6) K    i K    ' 

1 l    R     id/sin ej t 

This result is approximate because of the assumption that the 
effective moduli for the face and web are equal.   Combining Eqs.  (37b) and (38) 
results in 

—p = 2-/(C /Cf) (n sin 6 + 1) (n sin 9 + cos0) =a? (39) 

where Cf and Cf refer to the stability constant for web and face panels in shear.   The 

thickness ratio is then employed to obtain the area and inertia of the plate in terms of 
t and d.   The over-all stability equation defined by Eq. 235 of Reference 1 is then 
employed giving 

b 

4k(ü      D    3) 4kED , oX: 

1? ,1 _    2, K2      VVy   Xxx  ) b" (1-y  )b 

D    \1/2 /I     \1/2 

where k ~ 8 + 51 ■_)      ] = 8 + 5  I -JuL J for simple supports and infinite 

aspect ratio (Fig. 203 of Reference 1). 

1).   No Faces or Single Face Corrugation in Shear 

Let A    =a   t x        1 

I     = <r. td2 
xx        4 

I     = a- t3 

yy      5 

4 k and K = — ~ 32  for simple supports since I     » I       and 1-v   v   ~ 1. 
l-V  vv 

r xx        yy x   y x   y 

From Eq.  (40a), we have 

,1/4 3/2 
KE„     r „-,1/4      K[araM       E^t) (d) 3/2 

Q    _      R 
b    "   b2 

U       ,    3]1/4_   K(Q5fl43)       (ER0 

Lyy  xxJ ,2 
(41a) 
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but 

where a 

4 ■ v+v =v[(^)(4) + ] - tTt <°8> 

[WtAW    J  vnsine + cosö    7      ; 

is obtained from Eqs.  (37b) and (39). 

Combining Eqs.  (41a) and (41b) results in 

rt"   cTlH " KE 
tl/2 d3/2 (•. ■,*) 

1/4 

R b2 

Equating this to the stability of the web   ^ « Ct ER     ( d/sinfl) results in 

b 

a. C+sin20 
8      t 

•a/2 

1/4 H 7/4 

d/ 

Using the load equation, we obtain, 

m 7/4 

Q 

b2- i4-iffls(+) V^ \ „    /_L\ 7/4 
°b     b JT 

Q 

b   <o 

[8    /Vä 

*b 

*s    °o \7/8 

yr sin20 EA C>4/ 

Q 
T2 b a 

v6"   /sm2^EAct^\7 8_   !>/£   /<• \ 7/8 

where Cg   -   («/oy / (Eg/EA) - -£-' 

(Fig. 11) 

(Fig. 12) 

' H 

(41b) 

(41c) 

(42) 

(43) 

(44a) 

<44b) 

(45) 

The effective modulus was approximated with the secant modulus in 
accordance with Reference 9.   The average value ,E_ = E0(. 428 + . 572 V.25+. 75 E^/EJ 

was employed for unreinforced plates to avoid the need of another design curve.   This 
is justified by the fact that the correct form of E    is in doubt and the differences in 
the design curves are slight. 
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Values of the constants are as follows: 

«  S sm^ t I a10s      n sin0  + cos0 

a (n/4) sing  + 1/12 
40s =   n sin#  + cosfl 

«50s =  1/12 

80 

'90 

ag0 Ctsin26 

[«vF™ 

1/2 

where a   ft   = geometry factor for corrugation with no faces in shear. 

CL =    2 J-j;—     (n sin 0 + 1) (n sin 8 + cos 6) (39) 

-  n sin fl + 1 
11s"  n sin0  + cos0 7 

=   (n/4) sing +1/12 
n sin0 + COS0 

a7a10 
41s 

WIT«1*0/ 
n sinö  ± 1 

4a 11 

(46a) 

(46b) 

(46c) 

(46d) 

(46e) 

81" V nsinö + cos0     /    7 

(47a) 

(47b) 

(47c) 

(41c) 

l91 

«81 Ct sin'0 

K   ae a 
3x1/4 

5 "4 j 

1/2 

The detail geometry is obtained from: 

s    o 
7/8 

t= b anl, 2 9\sin20EA C^/T) 

d = t 
EA  Ct vTsin $\ 

1/2 

*o   *s 

(47d) 

(48 a) 

(48b) 
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f = t a_   (f = 0 for no faces) 

W//9 =  t a. 

(48c) 

(48d) 

2).        Double-Face Corrugations in Shear 

The results for double-face corrugations in shear are obtained in a 
similar manner to that for corrugation with one face in shear with the exceptions 

2 3 
that the I     inertia is defined in terms of td   rather than t   and the stability constant 

yy 
is modified by the ratio of the inertias. 

Let Ax = ai2l 

Jxx - a42 td 

Iyy=a52td 

K ~ 4 ( 8 + 5y Y^ i/O- - *   )   for simple supports 
* xx ' 

Expressions similar to Eqs.  (42), (43), (44b), (47) and (48) can then be obtained with 
the above definitions of the geometry. 

1-r a82 

°52 a423) 

1/4 

Hiif'^i^fm 

jd. . Ct Sin20 q82 

^2   (8 + 5Va52/a42)(a52a42 ) 
3\l/4 

1/2 

(+)■•« 9) 

b2a o 

a_b 

3 sin2fl 
a82   a92 

_!s£/gp^o 

d = 

sin 0W5 Ct EA, 

aQ9b/ f. '92' 
sin# 

V3 C. EA/ 

CA E 

ro 

tEA    = /rV3\ 
a 

= (tri   fP   (Flg- 9) 

(50) 

(51a) 

(51b) 

(51c) 
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I I 

i =a7t 

where 

W/> = a12t 

-  n sing  +1        , 9 
a 12s " n sing  + cos0       a 7 

= <nsinQ/4)  +.1/12 
42s     n sin£ + cos0 2 

[52s = a7/2 

(51d) 

(51e) 

(51f) 

(51g) 

(51h) 

t?   =   2   ||   (Ct/Cf) (n sin0 + 1) (n sin 0 + cos0 )1 1/2 

/o ~  v   n sin 0 +1 . , 
a82 = <2a7>  nsinÖ + oosÖ"    +1 

a92 = 

      °82Ctsin2e 

ndex £    is employed rather tfc 

~~3       Ö7T 
a52sa 42s j 

1/2 

(51i) 

(51j) 

The stability index C    is employed rather than £   in order to utilize Figure 9 

which was obtained for a double-faced corrugation in compression.   The present state 
of the art does not warrant refining the design procedure any further.   The technique 
is versatile enough, however, to develop new design curves whenever experimental 
and analytical investigations present more reliable stability equations. 

The Appendix presents a technique for determining the corrugation angle 0 for 
given values of n which would result in minimum weight of the plate.   The results of 
this analysis are presented in Figures A-la to A-2b together with the resulting values of 
the geometry coefficients a.   These can be employed wherever the fabrication require- 
ments do not dictate the values of 0 and n.   A possible design technique is to assume a 
value of n in order to determine the appropriate geometric constants and to design a 
minimum weight structure.   The detail design is then reviewed to obtain a better 
estimate of n consistent with the requirements of a minimum flat for joining and a 
minimum bending radius for the corrugation thickness.   This process can be repeated 
until the assumed value of n is in satisfactory agreement with the value of n required for 
fabrication. 

3. REINFORCED PLATE 

A plate is reinforced for the purpose of working to a higher stability 
stress level by-modifying the buckling pattern of the plate.   Reinforcing a plate by 
transverse stiffeners will not be too effective unless the stiffeners arc spaced closer 
than the width of the plate so as to force buckle waves shorter than those for the un- 
reinforced plate.   A more efficient construction is usually obtained by introducing 
longitudinal stiffeners.   These stiffeners not only carry a portion of the compression 
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load but they attempt to subdivide the plate into smaller panels with smaller buckle 
waves.    The longitudinal stiffeners can be viewed as intermediate "elastic" supports 
for the plate.   If the bending stiffness of the stiffener is sufficiently large relative 
to the plate, then it can act as a node provided it is also stable as a column.   Ortho- 
tropic plate theory, similar to that employed for corrugated plate, will be utilized 
in the design of reinforced plate. 

A typical integrally stiffened plate 
is shown in the accompanying sketch.   The simi- 
larity of repeated portions of the reinforced plate 
with column sections is apparent.   It can be shown 
that in order to obtain maximum stability, the 
geometric distribution of area in the cross section 
will be similar to a column for maximum inertia 
about one axis. 

The requirement of equal stability 
of the elements of the cross section permits ex- 
pressing the area and inertia in terms of two 
characteristic dimensions.   From Eq.  (20) we 
have 

and h - t (z)1'2 (eye//4 

(20a) 

(20b) 

The area and inertia are then evaluated utilizing the relationships for columns 

(Ac= aidtandlc«a3d
jt). 

Area/in.= A /b = [n (AQ) + whl   /b = (nc^ + z) dt/b= a? dt/b 

(1 - v2) -3* =  1^- n Ic/b = n a3 d3t/b = a4 d3t/b 
R 

(52a) 

(52b) 

(1 - v2)  -rf-   = Iyy = h
3/12 = (z>/ct/Ch)3/2 (t3/12) -o5 t2 

JR 

where  a„  _   n a   + z 

Q4   =  nQ3 

v3/2y a5   =  (zVc7c;)J/Vl2 

and n = number of stiffeners. 

(52c) 

(52d) 

(52e) 

(52f) 
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Employing Eq.   (33a) for an orthotropic plate with I    »I    , we obtain the 
stability stress of the plate: yy 

P 

KE_Vl     I- 

R     xx yy 

b2A 

KER^7% 
(4 \/d 

1/2 
(53) 

Equating the local stability of the element to this stress results in 

(*)- 
°7Ct 

K^r^ 
t 2/3 

(54) 

The load equation results in 

P = 
,2 b o" a„ 

o   7 

,4/3   , C   E       7/6 
a a    \        /     t   A\ 

4   5  \       / \ 
Ct«7 

•(V/e)(*) (Fig.  13a)     (55) 

with the detail geometry determined as follows: 

d =b| 

t =d 

C   a 
t    7 

2/3 

'a a 
4   5' 

ilLJL 
CtEA 

1/2 

£   er 
P o 

C E 
t A 

1/3 

(56a) 

(56b) 

-V^J (56c) 

f =«7* (56d) 

The load index is not unique since the  (d/b) ratio can be solved for in terms of 
the (t/b) ratio as well as the (t/d) ratio.   This would result in 

,=± Kf   K2'^2/3 
1/3    1/2 =(c3/2)('/') 

b*cr    Va   / a3(n+l)(i2)l/3C 1/2      Vp       ' 
° (Fig. 13b)      (56e) 
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The design of the structure requires a knowledge of the distribution of area 
(z = wh/dt) between the plate and the stiffening elements.   The distribution should 
be arranged so that the product D     D     is a maximum when the area and stability & * xx    yy 
thickness ratio are stationary.   This would result in a maximum stability stress. 
Considering a typical reinforced portion of the plate, we can resolve the product of 
the bending stiffness to 

D      D       „ xx    yy  ~ 
R 

2 2 
12(1-„ ) 

<Ct/Ch> 
3/2 

a3d
3t (57a) 

For a given number of stiffeners the value of the terms multiplying ad t is 
«3 

stationary and we arrive at the conclusion that the area distribution which maximizes 
3 

the inertia of the column section (ad t) will also maximize the over-ail stability 
o 

stress of the reinforced plate.   These values of z = wh/dt correspond to values pre- 
sented in Table 1, when the moment of inertia (I    ) of the column section is maxi- 

xx 
mized, for angles (see shaded area of sketch above) or for channels (if stiffener has 
area above the web).   This ia because the area of the skin assumed acting with the 
stiff ener is "wh" and not "2 wV'.   Any stiff ener area (wh) above the web should be 
distributed so that the area is stable to a stress equal to or greater than the stability 
stress of the web.   Note that the C, for the base is for a supported plate while the 

n 
C, and C. of the upper flange and web may be for a flange or a supported plate, 

h t 

If the plate is stiffened by stringers then the optimum distribution of area will 
depend upon the cross-sectional properties of the stiffener.   Assuming a stringer 
whose cross-sectional properties are defined as 

Area =   A     =o     dt (57b) 
s       sx 

Inertia =  I    =  a Q 
d t (57c) s so 

Centroidal distance = c = a     d      (57d) 

3 s6 
1_ 

-1 

•w- 

JU 
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and where all the elements of the stringer are at least as stable as the web (dt) . 
Then employing the technique of maximizing the inertia of the sheet-stringer com- 
bination for a stationary area, results in 

(aslas6    -2as3) 

(aslas6+as3) 

which can be employed to calculate values of 

wh       asl  > 
zs = KT = 77^—2— — 2 fa   ^ a „ + a 

a 
7 =   n(asl+Zs) + Zs (57f) 

2 
/ asl as6 \ 

"   n(as3+-a-TTJ (57^ 

and 

- ^ (Ct; 
«5= |Zs   <Ct/Ch> 

3/2 
1/2 (57h) 

to be substituted in Eqs. (55) and ( 56e) . 

The above design procedure assumes that reinforced plate buckles as an 
orthotropic plate.   The dimensions of the plate, however, may be such as to enforce 
another type of deflection pattern.   If the plate is very short so that it will not buckle 
except as individual smaller plates, then 

A a a. dt<r 
P 7 

2 2 2 
b    cr b   o" b   a oo o 

- -,mi) (f) 
but ± = w = d yryü^ü; (20a) 

which results in 

d 1 
b (n+lj/w^ 

(58b) 

._*_ (i^w^ i Vir. (£pilf.)(FI!., w p = 
b2

%    \ °7 V    °o 
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If the plate is sufficiently wide so that the side supports do not significantly restrain 
the center of the panel, then the design procedures developed for columns would be 
applicable for a plate with a few stiffeners. 

It is recommended that the stability stress level be evaluated for all the modes 
of failure described, whenever the designer has any doubts, and to base the design 
upon the lowest stability stress obtained. 

4. SANDWICH PLATES 

A typical honeycomb sandwich plate is shown r—   Core 
in the accompanying sketch. Each component of the sand- 
wich must be capable of doing its assigned task. Failure of 
any component can precipitate instability of the assembly at 
a stress lower than the design stress. The facing material 
provides the load carrying medium of the structure and must 
be stiff and continuous. The core material must have enough 
stiffness to stabilize the individual faces against buckling; 
restrain the faces from deforming independently of each 
other (the large bending stiffness to weight ratio is depen- 
dent upon the faces and core acting together) ; and to carry 
lateral loads and shears (lateral deflections of the plate 
cause a lateral component of the axial load). The core is 
connected to the faces by means of a bonding agent which 
must be capable of transmitting the loads between the faces 
and the core.   For minimum weight design the core and bond should be as light as pos- 
sible (consistent with their ability to do their assigned tasks) , and the faces should 
have the highest stress to density ratio in the expected environment. 

The design curves presented in this study are based upon an analysis 
presented in Reference 21 for square cell core and they should be sufficiently accurate 
for hexcel core.   The problem of face wrinkling, for which no acceptable design proce- 
dures exist, was empirically resolved by making the thickness of the core cell greater 
than 10 percent of the face thickness (t > . 1 f) .    This criteria can be readily modified 
without affecting the design curves.   The definition of effective stability modulus (E   ) 

R 
was avoided since disagreement exists as Lo the proper modulus.   The design proce- 
dure permits the designer to select any definition he believes to be appropriate. 

The analysis of the stability of the honeycomb sandwich is similar to the 
analysis of unreinforced plate with the exception that the effect of shearing energy upon 
the stability cannot be ignored.   The general equation employed (as, for example, in 
References 7, 8, and 21) is as follows: 
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er 
""crm 

KER(I/Ab ) 

1 + ■ 
erm 

ers 

K (I/Ab )A E 
(59) 

1 + R 
A   G„ 

s    R 

and 

where subscript erm refers to stability due to bending and no shear 
subscript crs refers to stability due to shear and no bending 
A   = shear area of sandwich ~ (p //of)/2 ~ t/s.   (The other symbols are 

defined elsewhere.)   Manipulation of this equation under the assumptions that the faces 
are small with respect to the depth of the sandwich (f «d) and that the effective shear 
modulus is proportional to the effective stability modulus 

[■ ER/GR=2(l+„) 

results in the following 

Kb 
bo* b <r 

(60a) 

(Eq. 13.2 of Reference 21) 

where €  = <r/E 
R 

(60b) 

and K = (60c) 

where k is the standard stability constant for plates presented in various texts, Ref- 

7T24 erences 1 to 8, (e.g., K = — = 43.5 for a simply supported plate of infinite aspect 

ratio) . 

Plots of this equation are presented in Figures 14a to 14d for given 
2 

values of t/s.   Entering with the known abscissa (P/b<r )   and proceeding to the 
proper curve   « = cr/E   , results in the ordinate (K d/b) which can be employed 

R 
to solve for the minimum depth which will stabilize the faces to the selected stress. 
The proper value of t/s is obtained by selecting an available s and t where t Z . 1 f 

2/3 
(this ratio can be modified) and s < 2f/(3 « )       .   These requirements can be 
satisfied with the aid of Figure 15 which also indicates the available cores. 
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Figure 14a.   Design Curves for Honeycomb Sandwich (t/s = 0. 004) 
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Figure 14b.   Design Curves for Honeycomb Sandwich ( t/s = 0. 006) 
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Figure 14c.   Design Curves for Honeycomb Sandwich (t/s = 0. 008) 

ASD-TDR-62-763 54 



"* 

1.0 

100 

9.0 

8.0 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

-I 1 1 1 f » 1 1 T 1 1 1 1 T 1 1 1 1 1 1 '—> ' T > 1 1 1 r- 

t/s    = 0.012 

Q    I       I       i       i       ■       I       '       1       i I I 1 1 I I I » I I I 1 I I I I I I I I I       I 

0.001        0.005       0.009        0.013 0.017 0.021 0.025        0.029 

P    m  2f       A/in. 
b2cr       b b 

Figure 14d.   Design Curves for Honeycomb Sandwich ( t/s = 0. 012) 
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The design procedure can be described as follows: 

( 1)    Select a design stress <x and a material (E   ,   <r , ß ) 
A        O 

( 2)    Enter Figures 12 and 4 with tr/cr   in order to determine 
C    andC 

s c 

( 3)    Calculate E    and E   • 
S T 

ES  =  EA[('/tro)/Cs] (61a) 

ET   =EA[(<T/V/CC] (61b) 

( 4)    With the appropriate effective modulus formula, determine E   , where 
ER  " ER <ES' V 

( 5) Calculate « and € 

where   c =   <r/E (60b) 

and   € =  o-/Eg (61c) 

( 6)    Enter Figure 15 with c and determine an available t/s which stabilizes 

the faces.   Where t>(.l)f  =   (.1)  TT— (62a) 
2/3 

and s < 2f/(3€) (62b) 

( 7)    Enter Figure 14 for the appropriate value of t/s with 
2 d 

P /b <r and c and determine K — . 
b 

( 8)    Calculate the depth of core required 

d    -   (Kd/b) (b/K) - f (63) 
c 

An analysis of the weight of the sandwich indicates that the weight of the bond 
is fairly independent of the design, the weight of the faces is dependent upon the face 
density  (p.) and stability stress (<r), and the weight of the core increases with core 

density ( p ).   This would suggest that the honeycomb sandwich be constructed with 
c 

faces of the highest stress to density ratio and the lightest care that satisfies the core 
requirements. 
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Figures 14a to 14d indicate that the depth of core increases with the 2f/b ratio. 
A minimum weight design would result if the face thickness is made as small as pos- 
sible consistent with other requirements, such as required torsional stiffness, etc., 
and if the remaining required axial load carrying area were distributed at the supports 
so as to preclude instability. 

For plate-like structures the minimum weight occurs for equal faces.   For box- 
like structures in bending, however, a more efficient design can occur with thicker 
outer faces. 

In some cases, selecting the allowable compressive stress does not result in a 
2 

minimum weight design.   This cäSi occur if the load intensity (P/b a ) is too small 
o 

or the available core which satisfies the core specifications is too heavy.   An analysis, 
such as performed in Reference 21, indicates that the design stress which results in 
minimum weight satisfies the following: 

8« P pi 
8<r      bV      p Tief r c 

(Eq. 20 of Ref. 21) (64a) 

Plotting 

P* /EA\
3/2        /ff \5/2  /EAxl/2!X      ,<rM*JEJ f 

b2o-        pjK 
o       c 

/*7      ~\^l    VEJ    L
E
R   Vv/TPT^ 

(64b) 

as a function of a / <r  can be employed to obtain a graphical solution of the optimum 

stress ratio a-/a- .   No attempt was made in this report to present such curves since 

the value of E    was not defined. 

If E_   =  Ec, Eq. (64b) reduces to 
R S 

E      3/2 5/2 1/2      E 

o       c 

(64c) 

If the optimum stress is low then a good approximation (upper bound) 
would be to assume that E„   = E . .   This results in 

R A 

/ E   3/2p  > 

2 ,/K   P 
c 
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D.       TUBES IN TORSION 

Tubes in torsion can be designed in the manner described for compression 
members.   Two types of problems will be considered.   The first is a tube (e.g., 
control rod) where the diameter (d) wall thickness (t) are determined by con- 
sidering the local and over-all stabilities.   The second is for a cylindrical tube 
(e.g., fuselage) where the thickness must be determined by considering the local 
stability. 

1 . LONG TUBE 

The over-all stability of a tube in torsion 
is obtained by the use of Eq. 107 of Reference 1.   This 
results in ^% 

o    jr\ o 

T-    -f-H-f^S-T- ß^ y^ (65a) 

T=
 2jfr= <V2) ^l <d/i)      T7 (65b) 

o Ll 

where A    = -2- d      is the area enclosed by the median curve (65c) 

andt«d. 

The local stability is determined by the use of Eqs. 
(A6) and (A7) of Reference 5, i.e., 

2 ^/4 

T- 2,   5/8 (d) (j) ^KERU) j) <66a> 
1Z  (1-1/   ) 

where K  =  23/4 ir\/l2 /l-„2)5/8 (66b) 

k   =   .85 F for simple supports 

k   =   . 93 F for clamped supports 

F   = Factor to correlate theory and tests — .84 (Reference 5). 

The effective modulus is assumed to be the secant modulus (E    = E ) for a tube in 
torsion. 
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Equating the two stabilities results in 

E„ 7 J x , L v5/4   , , vl/2 
T 

T    = 
2A t 2 

o ? J\ (f )-"*{$)   (4) 

sr ,4/i ,, V> 
-   (4r)    (f)    "(i) 

7T     2 
The load equation (T=-d tr) (68) 

Li 

expressed in nondimensional form becomes 

/,o ~*/rU/W 'o =  i/i 2KJ  UJ      'o 
but from Eq. (65c), we have 

/3C 
o-    '        2(r c o o 

o (Fig. 16) 

o 

.7/5       A/CP a /       c 
4/5 
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(69a) 

(69b) 

1Y/0       r=—     -ft/0 

-       T i-JT   /     A    /—\ /V   c   \ /    17/5\/r>/3\ p =rr   — U^    c       UK       -(f,   )(T-)   <69C) 

The detail geometry is obtained as follows: 

d =- 2  (70a) 

2 <r C 

-*      t=7i7F    ^r <70b> 
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2. CYLINDRICAL TUBE 

In many cases the tube is not too long and over-all stability does not 
determine the design.   The following design approach can be employed for the case 
of a monocoque fuselage when the length and diameter are prescribed and it is desired 
to determine the minimum wall thickness to preclude local instability.   The load equa- 
tion is 

T   = f d2tr (68) 

but from Eq. (66a) we have 

4/5    ,2/5^3/5 

U0 I „4/5 (71a) 
K 

Substituting Eq. (71a) into Eq. (68) and transforming to nondimensional form results 
in 

* 3 
2v^K4/5 

/df/yWA0\
4/5 

VlJ V  ES/EA I 

a-       \4/5 
o     \ 

wSi 3E 

rfz 

and     P  = 

i\„ 

A 

4/5 

(71b) 

\ o  / o 

The value of t can be determined by the equation 

t i  

after the value of  =   °/o"   !s determined from the graph. 

(73) 

E. BENDING OF BEAMS AND BEAM-LIKE  PLATES 

The minimum weight design of a beam is not as apparent as a column.   In a 
column the axial stress in the member is independent of the distribution of the area 
in the cross section.   This does not apply to a beam since an area redistribution will 
generally change the stress distribution.   A redistribution of a given area of the beam 
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I ll 

may decrease the stability of an element to increase another but it may also reduce 
the resulting stresses so that the elements remain stable for larger moments.   Thus 
increasing the web of a beam at the expense of the flange will increase the allowable 
applied moment of a beam of constant area up to a point after which the loss of sta- 
bility overrides the decrease in stress.   The problem posed is how to determine this 
point so as to design a beam to resist a given moment with a minimum weight. 

The technique employed is to examine a beam which fails because the compres- 
sion stress exceeds the buckling of an element of the beam.   Consider any beam:    The 
area, the inertia, and the extreme fiber distance can be expressed in terms of two 
characteristic web dimensions d and t and a ratio of flange area to web area (z = wh/dt) 
As an example, the cross-sectional properties of the channel section can be repre- 
sented as follows: 

A = a   dt = (1 + 2 z) dt 

I  = a   d3t= (1/12 + z/2) d3t 
«3 

c =  aßd = (1/2) d 

The assumption is made that the extreme fiber stress can be calculated with sufficient 
accuracy by employing linear bending theory (i.e., cr = Mc/I).   This should be satis- 
factory for optimum structures such as I-beams where the moment carrying capacity- 
is primarily concentrated in the flanges.   In addition, it is assumed that the stress- 
strain relationship is the same in tension and compression and that the neutral axis 
does not shift even when the stresses become nonlinear. 

The load equation is therefore 

(74a) 

£ * 
1/2 

Letting t/d =( ) define the thickness ratio which becomes unstable at the 
\ ct V 

design stress results in a load index 

1/2 
Q6M /EACt' 

,3       \     <r      I a p 
a    a   d \      o    / o 

3    o 

4"     VT" (74b) 
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Similarly, the area can be expressed as an area index. 

E    C    1/2 

di d^ -^ 

(74c) 

For a given material and geometry, the area and weight of the beam are pro- 

portional to d v£    whereas the moment carried by this beam is proportional to 

d v£   {or/ a- ).   Solving for d in Eq. (74b) and substituting the resulting solution into 

Eq. (74c) results in 

1/2 
EACt 

Letting 
tt6M 

«3*0 

(75a) 

(75b) 

and (-r^) 
-2/3 

results in 

=   d (75c) 

°1X 

1/2 

o       *p 

ft*-.) 
2/3 (75d) 

This equation can be plotted to determine the value of or/ a that would minimize this 
o 

expression which is proportional to the weight of the structure for a given material, 
applied moment, and geometry.   (See Fig. 18 for a typical plot for a corrugation plate 
beam). 

The above analysis indicates that the optimum value of the extreme fiber stress 
ratio <r/ a- , which would minimize the weight of a given beam of a given material, de- 

pends only upon the stress-strain relationship.   The area distribution (z) and the 
boundary conditions (C ) do not affect this optimum stress ratio. 
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The other questions that must be resolved are what is the distribution of the 
area in the cross section and what are the elemental dimensions that would result in 
minimum weight when stressed to this optimum stress.   The approach is to examine 
various types of distributions and to determine which would result in a minimum 
weight for a given moment.   A complementary procedure is to note that a cross sec- 
tion which can resist a higher moment can be reduced in weight to take the required 
moment.   It is immediately obvious that an area distribution which would maximize 
the section modulus (i/a   d) while maintaining the area and thickness ratios would 

6 
reduce the stress level and result in a minimum weight.   The technique is similar 
to that of columns (maximum I    ) in solving for the area distribution z.   Sections of 

JfkA 

constant thickness,   such as bent-up sheet,   can be determined in this manner. 
Sections of variable thickness require some additional defining conditions.   In air 
arbitrary cross section the flange elements can be less stable, equally stable, or 
more stable than the web element.   If the flange is less stable, then some area could 
be removed from the web and added to the flange; this would increase the moment 
carrying capacity of the beam.   If the flange is more stable, then area could be re- 
moved from the flange and employed to increase the depth of the web.   This would 
increase the section modulus and moment carrying capacity of the beam.   This sug- 
gests that a minimum weight beam would have the flanges and webs equally stable up 
to the optimum stress. 

Thus the design of beam sections is somewhat similar to columns.   The re- 
quirements of maximum section modulus and equal stability result in defining the 
cross-sectional properties in terms of two characteristic dimensions d and t.   The 
optimum stress ratio (<r/ a-) required to solve for d and t, however, can be deter - 

o 
mined as a function of the nonlinearity of the stress-strain relationship of the 
material (ß), and is presented in Figure 19.   There is no need to resort to a P 
vs. a- /ar 0 plot to determine this stress ratio. 

1. BEAMS 

The design procedure for beams is straightforward provided stability 
designs the cross section.   The description of the cross section in terms of the web 
dimensions is determined by maximizing the section modulus for a stationary area 
and thickness ratio.   Values for typical sections are shown in Table 2.   The optimum 
stress ratio is determined with the aid of Figure 19 and the beam is designed for this 
stress. 
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Figure 19.   Optimum Stress, Depth, and Area Indices of a Beam 
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TABLE 2 - GEOMETRIC FACTOR FOR BEAMS IN BENDING 

Section 

(Bending about x axis, 
see Table 1) 

z* ai Q3 Q6 

wh/dt A/dt l/d3t c/d 

I-Beam 

Channel 

Tee 

Angle (Sheet stiffener) 

. 250 

.500 

.625 

1.250 

2.000 

2.000 

2.250 

2.250 

.333 

.333 

.222 

.222 

.500 

.500 

.222** 

.222** 

r 

*  The flange may have to be stiffened for bent-up sheet to ensure that  C >C (z t/h)' 

where    C    =   stability constant for flange in compression 

C    =   stability constant for web in bending 

A 
(C  =    where k is defined in various 

12(1-/) 

texts, e.g., References 2 and 4). 

** Flange in compression. 

The design equations then become 

.1  1/3 

d   = 
a6MyERct; 

3/2 

U/3 
a   M   ,E. C, 

D 

1/2 

G9) a      or  \ £ 
.3 *p    o 

1/2     ,a„ M 1/3 
Z     o- 1/2 

t   =   d 

where cr =   (<r/<r ) <r (a/a-    obtained from Fig.  18) 

E„   =   E.    (<r/<r )/( 
R       "A p (£     obtained from Fig. 5) 

(76a) 

(76b) 

(76c) 

(76d) 
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If the beam is of sheet metal, then 

w = d (z t/h) (77a) 

If the beam is machined, then 

w=d(z)l/2(Ch/Ct)l/4 (77b) 

and h=t(z)l/2(Ct/Ch)l/4 (77c) 

The weight of the structure is 

W - p a    dt (77d) 

and must be compared for various materials. 

If the allowable compressive stress is lower than the optimum stress 
e.g., if tension, creep, or fatigue governs), then a possible design procedure is to 
employ the same equations to obtain a beam of maximum section modulus that is 
stable up to the allowable stress.   Equal stability of the elements will result in an 
optimum weight as indicated in the previous discussion. 

2. CORRUGATION PLATE BEAMS 

The design procedure for corrugation plate is identical to that des- 
cribed for beams with the exception that the moment and cross-sectional properties 
are given per inch of width, i. e., 

A   ■   G^t 

I   =  aAd
2t 

4 

c   = a6d 

This results in 

1/2 

A 
EACt   1 
-7—) ST 
T-JSTT- ■> ; ' v/2 - do^7 <78a) 
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and d    = o 
-1/2 (0-/C7/ 

A typical plot of   d ^/f" as a function of cr/a   is shown in Figure 18.   The 

results of such plots are then employed to obtain a plot (Figure 20) of the optimum 
stress ratio (cr/cr ), depth (d ), and area index (d   •>/£") as a function of ß. 

The values of CL,  a., and a« vary as a function of n and 9 and are formu- 
14 o 

lated by Eqs. (26),  (31) and (32). 

The resulting design equations are 

(H VVW/2 

737T7 
aß M \l/2 

(79a) 

(79b> 

f   =   2t (n sin 9 + cos 9 ) >/C /C (79c) 

and W=   a   tp (79d) 

F. COMBINED  LOADING CONDITIONS 

Structures are frequently subjected to more than one type of loading.   The 
combination of loads must be considered in designing the structure since it affects 
the stability.   The addition of a tension load would tend to restrict the lateral de- 
flections and increase the stability while a compression load would have the oppo- 
site effect.   The effect upon the stability of loads causing different stress systems 
is usually expressed by an interaction equation.   The interaction equation is a re- 
lationship between the ratios of the applied stresses to the buckling stresses (acting 
alone).   When the loads cause stresses in the same direction they are usually added 
numerically and compared to the critical stress. 

1. INTERACTION EQUATIONS 

The interaction equations can be employed to obtain a modification 
factor to apply to the load index in the design procedures described previously.   A 
typical interaction equation is as follows: 
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°"l      \      I     *2 
+  -srr—      - i (80) 

\°"Cri    I       \   ^°r2 

The ratio of stresses is usually known since the stresses are propor- 
tional to the known applied loads and the corresponding resisting areas, i.e., 

»i ■ V\ 

%  "   VA2 

o- P       A 

*f^T" r-= x (81a) 
1
        Fl      A2 

The ratio of the critical stresses is known provided the stability equa- 
tions are similar in form, i.e., 

*cri  =  ClER<t/d>2 

-or,  "  C2 ER <t/d>2 

*"«        C2 

cr 1 

Substituting Eqs. (81a) and (81b) in Eq. (80) results in 

n 

(-f) 
ai\n       /*! 

<rcr1/ \€rcr1 

+     -   1 (81c) 

This equation can be solved for the stress ratio o\ /a The structure could then 1    cr 

be designed for a load equal to P /(cr /cr      ). This would be a structure which would 

not become unstable when the loads P   or P   were applied but would become unstable 
1 £i 

when both loads were applied simultaneously. 

ASD-TDR-62-763 73 



The technique can be readily applied to the cover of a box beam subjected 
simultaneously to bending and torsion.   The cover will have an axial load equal to 
the moment divided by the height of the box (P = M/h) and a shear load equal to the 
twisting moment divided by twice the height of the box (Q = T/2h).   The interaction 
equation for a plate in compression and shear (Eq. 55 of Reference 4) is usually 
given as 

=   1 
\     cr /        \     cr / 

Since the areas are the same, we obtain from Eq. (81a) 

x = 
p 

T 
2M 

A comparison of the stability equations results in 

.2 

y = 
kcr 

cr 

CTER(t/d) 

Ct ER (t/d)2 

Eq. (81c) then becomes 

cr cr 

and the solution is 

1 + 4 
\ 
1/2 

m - 1 

cr if) 4S 

(82a) 

(82b) 

This results in the following modified load index for unreinforced plates: 

2 

P = 
CtEA 

1/2 

b2<r 

«f£ 
-*S 

2,1/2 

-1 (82c) 
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2. COMBINED AXIAL  LOAD AND BENDING OF  BEAMS 

The design of beams subjected to combined axial load and bending can 
be treated in a manner similar to beams in pure bending provided the axial load is not 
too large.   Employing the assumptions of linear stress distribution and non-shifting 
of the neutral axis, results in the following stress equations: 

M c       P cr =   + — 
I A 

M°6 

a3d
2t 

a   td 
(83a) 

*6M 

a3d % 

a0 Pd E. C. 1/2 

(ltvi)(vt)    .JLJT 
\ aia6M /   \      °o I *o        P 

(83b) 

V 
V   o-o      ' 

^ 
(83c) 

a3 Pd 

If the expression — is small compared to 1 then the equations 
1 6 

are identical with Eqs. (75) for pure bending and the optimum stress ratio, which does 
not change, can be obtained from Figure 19.   Assuming that the optimum stress ratio 
does not change significantly results in the following design equation which must be 
solved for d: 

(€- *6M      /            °3 P d (d/d ) 
oy      o' 

a3<To     V*      ala6 M 

EA C   ,1/2 x-e) (84a) 

Letting 
"3% &r- > (84b) 

and      — ~      77- b        oa„ M 
1   6 

(84c) 

results in   [ — |      =    b 1 -f 

ad     / A   \ 

(84d) 
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which is solved graphically in Figure 21 for (d/d ) knowing the value of b and    ad A). 

The design technique is to determine values of b,  a, and d   knowing the material, the 

loads, and the geometric distribution.   With this information the depth is calculated 
from which all the other dimensions are obtained with the aid of Eqs. (76b), (77a), 
(77b), and (77c).   It is necessary to either assume that the value of C   does not change 

because of the axial load or else to employ an iterative technique.   This would require 
assuming a value of C , calculating the geometry and stress distribution and deter- 

I* 

mining the corresponding C   for the web (e. g., Table 34 of Reference 2).   This pro- 
v 

cess would then be repeated until the assumed and calculated values agreed to a satis- 
factory degree. 

The same design technique can be employed with corrugated plates subjected 
to bending and axial loads.   The design equation becomes 

(85a) 

where b =    - ( — ] (85b) 

(85c) 

T 2 (85d) 

2 

1     " b     1 + 
ad 

o 
b U)J 

b = 
a4°o (-E 

0     ' 

a 
b = 

a4 
a a 
16 

P 
M 

This can be solved directly as 

or graphically as shown in Figure 22.   The detail design is then obtained from Eqs. 
(85d),  (79b) and (79c). 

G. DESIGN HINTS 

Errors can be introduced into the design because of reading and interpolating 
the design graphs.   In order to minimize these errors it is wise to incorporate check 
calculations.   The largest errors occur in estimating the values of stability parameter 
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£   whenever log ß is not a negative integer.   In the elastic range (low load indices) 
the stability parameter is equal to the stress ratio (£   = £   = £   = cr/cr ) but as the 

material becomes plastic (larger load indices) then the incremental changes of the 
values of cr/cr  ,   £ ,  £   and £   increase in the order given, 

o      s      p c 

Having calculated the load index P from the appropriate formula, the designer 
enters the appropriate curves to obtain values of cr/cr  ,   £ ,   £ ,  and £ .     If the 

o      s      p c 
graphical results indicate that the stress is elastic (cr/cr   = £ ) then the exact value of ^"/°*0 

can be obtained by the solution of the load index equation (e. g., Eq. (44b); 
p -[£ ) (°"/°" ) = (c/o1 ) for a corrugated panel in shear) and will serve as 

a check upon the graphical result.   If the graphical result indicates that the stress is 
plastic (cr/cr     / £ ) then calculating the load index by means of the stress ratio and 

stability parameters would serve as a check upon the graphical interpolation. The 
least sensitive parameters, coupled with the load index, can be employed to obtain 
a better estimate of the most sensitive parameter.   For example, 

can be employed from Eq. (10b) to obtain or check the column stability parameter 
£  .   Greater accuracy in reading the design graphs can be obtained by enlarging the 

c 
scales for the particular type of construction, material, and loads of interest.   The 
possibility of having to design for materials which have high stress ratios (e.g., 
structural steel) resulted in the design curves presented in this report. 

The minimum weight design must be increased in area if the allowable stress 
is less than the stability stress that corresponds to a minimum weight.   A method of 
increasing the area so that the stability of the different modes of failure remains 
equal is recommended.   This will result in the most stable structure for a given 
area and will permit a maximum increase of the applied load if the allowable 
stresses should ever be increased.   If the allowable stress is predicated upon 
the permissible creep strain in a column then maintaining equal stability of the 
local elements and over-all buckling should tend to result in an optimum design 
for creep buckling.   As an example, if the area of a column has to be changed 
because the allowable stress {a1) is lower than the optimum design stress (cr), then 

A1   - A-^- (86a) 

/     xl/3 

d'  -   d(£) (86b) 

/{yN2/3 
and       t'   *   t(^7J (86c) 
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d ' t ■ increases the area properly by insisting that the —   and —,   ratios be equal so that 

the local and over-all modes remain equally stable.   The primed terms refer to the 
new geometry while the unprimed terms refer to the minimum weight geometry dis- 
regarding the lower allowable stress.   Similar equations can be derived for other 
types of cross sections. 

The basic load equation can be employed to check on the design area.   Errors 
in reading the graphs can result in slight errors in the detail geometry.   Comparing 
the load that can be resisted by the designed details (e. g.,  P = ca    dt) to the actual 

applied load can serve as a check upon the calculations.   Small errors can be recti- 
fied by modifying the area as indicated in the preceding paragraph.    Large errors 
would suggest redoing the calculations. 

The detail design will result in odd size gages and dimensions which should 
be modified in an actual design to conform with available sizes.   Wherever possible 
these modifications should be apportioned in such a manner as described previously 
to maintain the proper relationships between the thickness ratios and never to de- 
crease these ratios below the ones prescribed by the minimum weight design. 
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SECTION III - ILLUSTRATIVE EXAMPLES 

Two structures, representative of aerospace constructions, will be investi- 
gated in order to illustrate the nondimensional design technique presented in this re- 
port.   The first is a heated (800° to 1000°F) beam truss with the design dependent on 
a relatively simple load-temperature-time history.   The second is a portion of a 
wing with the covers heated to as high as 2000°F with two load-temperature-time 
histories representative of possible aerospace missions with relatively rapid or slow 
exits and reentries. 

It is not intended that these examples cover all the design details or to rep- 
resent exact material properties and final designs.   They are presented to demon- 
strate the simplicity and ease of employing the nondimensional design technique in 
preliminary designs. 

A. BEAM TRUSS 

A beam truss is loaded as indicated below.   The lengths of the beam truss 
members and their loads are presented in Table 3.   The loads in the members are 
given in terms of limit loads which change with temperature and are applied for the 
times specified. 

The design technique will be illustrated (using slide rule accuracy) for 
one type of cross section (wide flanged columns) and two possible materials, 6A1-4V 
Titanium and 17-7 PH (TH1050) Stainless Steel.   The actual design would have to be 
investigated for other probable cross sections and materials.   The material properties 
are determined from scant experimental data presented in References 10 to 13 and are 
shown in Figures lb and 23.   The data are for sheet material and are assumed to apply. 
A more sophisticated investigation would require a greater amount of experimental data 
with a statistical procedure to obtain the proper confidence level for the material pro- 
perties. 
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1. LOAD TEMPERATURE  TIME HISTORY 

TABLE 3 - LENGTHS AND  LOADS IN TRUSS MEMBERS 

Member length b load/X =   P/X 

U1"U2 X 30.0 -4i/h - 12.0 

U2"U3 
I    2               2\1/2 

(z 2 + (h/2)2 ) 30.41 
/2              2N1/2 

-(/Mh/2)2)     /h -3.041 

U1"L1 
h 10.0 - 3.0 -3.0 

U2"L2 
h 10.0 - 2.5 - 2.5 

Ll-U2 v.*r 31.62 3(i2
+h2)1/2/h 9.486 

VU3 t* 2 + (h/2)2) 30.41 G2 + (h/2)2)l/2/h 3. 041 

L1"L2 J 30.0 i/h 3.0 

Note:  X  =   30", h = 10" 

2. 

Limit Load X = 10, 000 lb. at 800°F for 10 hours 
8, 500 lb. at 900°F for 1 hour 
7, 000 lb. at 1000°F for 0.1 hour 

DESIGN STRESSES 

The maximum stresses that the elements can attain without destroying 
the structural adequacy must be determined.   This stress must be evaluated by con- 
sidering all possible modes of failure.   The structure may be inadequate because of 
instability or because of stresses which cause rupture or excessive deformations. The 
stresses should be sufficiently low so that the structure does not fail statically (short 
time strength), dynamically (fatigue), or through inelastic action (stress rupture, 
creep) when magnified by appropriate factors of safety.   The technique of designing 
for instability has been presented previously.   The upper limit that the stress can 
attain must be evaluated by considering the other modes of failure. 
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Allowable stresses are determined in Table 4 by considering short- 
time strength (with a factor of safety of 1.5) and long-time creep deformation (with 
a factor of safety of 1. 1). The table is self explanatory. The factors of safety can 
be varied at the discretion of the designer to note their influence upon the final 
design. It should be noted that the designer should consider other modes of failure 
as well as other materials. The data presented are intended merely to indicate the 
design technique rather than to obtain an actual design. 

3. DESIGN OF MEMBERS 

a. Tension Members 

The tension members would be designed simply by supplying 
sufficient area so that the allowable stress is not exceeded.   The distribution of the 
area is not critical.   The optimum material is the one in which the tr lp ratio is 

a 
maximum.   Note that the allowable stress at the reference temperature (800°F) is 
the minimum of the creep stress (cr ) and the lowest value in columns 5 and 12 of 

c 
Table 4.   This would preclude failure from short-time or long-time tensile stresses 
for the required lifetime of the structure. 

Since 

and 

'-?) 65.5 
800 Tit-   "   .160  =41° 

P    1 800St-    =   "jl'   289 

therefore the titanium is more efficient for the tensile members and <r       =  65.5 
am 

and p   -   . 160 are employed in the design.   Knowing the allowable limit stress in 
tension, it is then possible to determine the area and weight of the tensile members 
of the beam truss.   The calculations are shown in Table 5. 
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TABLE  5 - DESIGN OF  TENSION MEMBERS 

Limit Load 
at 800°F Tension Area Weight/In. 

Length of 
Member 

Weight of 
Member 

Member 
P 

(Ref.  Table 3) 
A=   P A    °am 

a      =65,500 
am         ' 

(Table 4) 

W = Ap 

p = . 160 

b 

(Table 3) 

Wb 

k-u2 
L2"U3 

Ll-L2 

94,860 

30,410 

30,000 

1.440 

.465 

.457 

.230 

.074 

.073 

31.62 

30.41 

30.0 

7.28# 

2.26 

2.19 

b. Compression Members 

1) Geometry Factors 

Assume that the wide flange cross section must buckle by 
bending about the X - X axis because of the lateral support supplied by covers which 
introduce the load into the truss.   We obtain the following geometric parameters with 
the aid of Table 1. 

z   =     .083 

a±   =   1.333 

a3   =    .167 

area distribution, 

area ratio, 

inertia ratio, 

stability constant for flange,     C,    =     .388 

stability constant for web, C.    =  3.62 
2 

stability constant for column,   C    = w 

Cd   " T~ 

2w 

X-' 

fK 

-X  d 

modified stability constant 
for column 

=     .125ir     =   1.23 

modified geometric constant     KQ = -^    C^'2  =  1
,^7r2y3.62   =   1.75 

width ratio, 

thickness ratio, 

^=(2)1/2(vct)
1/4=.- 

T=(01/2(Vch)
1/4 = .so3 
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2) Material Factors 

The material parameters are obtained from Figure lb 
and are tabulated in Table 0 for the different materials and temperatures. 

TABLE 6   -   MATERIAL PARAMETERS 

Material Temperature 
6A1-4V Titanium 17-7PH(TH1050)St. Steel    | 

800 900 1000 800 900 1000     1 

log£* 

i           EA/106* 

<r/103* 
0              2 

EA/cr 1(T 
A    o 

3/2,    5/2 
EA      /tTo 

-5.6 

10.2 

5.0 

20.4 

18.4 

-4.7 

8.9 

5.2 

17. 1 

13.5 

-4.2 

7.6 

5.25 

14.48 

10.5 

-6.9 

24.6 

9.0 

27.35 

15.9 

-5.2 

23.0 

8.8 

26.2 

15.2 

-5.0       j 

21.0 

8.2       ! 

25.6 

15.8 

♦Figure lb 

3) Load Indices 

The load index for the various members and loading 
conditions can be readily calculated from the geometry and material parameters.   The 
load index is calculated with the aid of Eq. (11a) which can be expressed as 

-       P     EA3/2   K        ' 
p = 7 7"s/2  G 

b
      *o 

Data from Tables 3 and 6 are then employed to obtain the ultimate load indices pre- 
sented in Table 7A. 

TABLE 7A - ULTIMATE  LOAD INDICES PA 

Member 6A1-4V Titanium 17-7PH (TH1050) St . Steel 
800° 900° 1000° 800° 900° 1000° 1 

U2 " Ul 6440 3950 2580 5540 4570 3820 

U2 " U3 
1590 980 640 1370 1130 940 

U1"L1 14,500 8900 5810 12,470 10,300 8610   ! 

U2"L2 12,080 7410 4850 10,390 8580 7170   1 

4 )          Desig ;n Stresses In Compressi on 

The critical stress ratio for these load indices is 
obtained from the nondimensional plot of Figure 6 and is Tabulated in Table 8A.  The 
stresses and weights for these conditions are also calculated and tabulated.    The 
maximum weight for each material governs the design for that material in order 
to ensure structural adequacy under all conditions.    The smaller of these maximum 
weight values determines the material, the design weight, and stress.    The results 
are tabulated in Table 8A which is self expanatory. 
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TABLE 8A - STRESSES AND WEIGHTS 

Titanium 

Member 

U   - U 
2        1 

U   - U 
2        3 Ui-Li 

U   - L 
2        2       1 

P800°F 180, 000 45,600 45,000 37,500 
p      . 1DU 

Min. Wt.      Pp/o- 
au 

a     - 1.5 a      = 98,300^' 
au              am 

0.293 0.075 0.073 0. 061 

800°F cr/o-o (Fig. 6) 15.2 13.7 16.0 15.8 

1      <r   = 5000 
o 

a     = (<r/<r )cr 
cr             o    o 

76,000 68, 500 80, 000 79, 000 

A= rP/o- 
cr 

W« A/D 

2.37 0.67 0.56_ „_^ 0.47 

|0.379| |0.107J [0.090J ||0. 0761 

900°F cr/<ro (Fig. 6) 13.0 11.4 13.8 13.4 

a   = 5200 
o 

a    =(Va )CT 
cr          o   o 

67, 600 59,300 71,800 69,600         j 

A= rP/o- 
cr 

2.26 0.66 0.53 0.46 

W= Ap 0.334 0.105 0.085 0. 073 

1000°F a/a    (Fig. 6) 11.5 10.2 12.3 12. 1 

o-   - 5250 
0 cr    v     o7  o 

60,400 53,600 64,600 63,500 

A= rP/a- 
cr 

2.09 0.60 0.49 0.41 

W= A/o 0.334 0.095 0.078 0. 066 

(1) Allowable ultimate stress =1.5 (limit allowable stress from Table 4) am 

Optimum design weight for both materials (minimax) 
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TABLE 8A - STRESSES AND WEIGHTS (Cont) 

17-7PH 
Member 

St. Stl. U   - U 
2        1 U2-U3 

U   - L 
1        1 

U   - L 
2        2 

Min. Wt. <j     = 120, 000*1* 
au 

0.414 0.105 0.104 0.086 

800°F a-/a-   (Fig. 6) 
0 

10.9 9.8 11.6 11.4 

cr   = 9000 
0 

c      = (a/a- )<r 
er     x       o'   o 

98, 100 88,200 104,400 102, 600 

p = . 276 A = rP/<^ cr 

W= Ap 

1.83 

0.505 

0.52 0.43 

0.119 

0.37 

0.104 |0.144 

900°F <r/<r^ (Fig. 6) 9.0 8.0 9.7 9.2 

er   = 8800 
0 'cr'^o^o 

79, 200 70,400 85, 400 81, 000 

A = rP/crcr 

W= A^ 

1.93 0.50 

0.138 

0.45 0.39 

10.533| 1 0.124| 10.108 I 

1000°F a-/ <TQ (Fig. 6) 8.8 8.7 10.8 10.6 

<r    = 8200 
0 

o*     = (o"/cr ) cr 
cr     x       o'   o 

72,200 71,300 88, 600 86, 900 

A - rP/cr 
cr 

1.74 0.45 0.36 0.30 

W= A^ 0.480 0.124 0.099 0.083 

(1)        Allowable ultimate stress = 1.5 (limit allowable stress from Table 4) am x ' 

Design weight for the 17-7 PH St. Stl. material (maximum) 
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5)        Detail Design 

Having determined the optimum axial stress, the 
member can be designed as shown in Table 9A. 

It is interesting to note that although the steel has 
a higher modulus to density ratio it is not employed in the minimum weight designs 
of the compression members in the temperature ranges considered.   This can be 
attributed to two causes.     The optimum design stresses for the applied loads are 
well into the plastic range.    Any effect of a high elastic moduli ratio is considerably 
reduced in this region and the allowable stress to density ratio tends to govern the 
selection of the material (as was the case with tension members).    Secondly, it 
can be shown that the optimum material for a column is governed by a ratio 

of the density to the three fifths power of the stability modulus ( i. e. , W°7>/(ER)      / 

An analysis of this ratio in the elastic range of titanium and stainless steel would 
indicate that the steel is slightly less efficient at 80(PF but that this is reversed 
at the higher temperatures.    Thus the steel would tend to become more efficient at 
the higher temperatures when the applied loads are so small that the optimum design 
stress is in the elastic range. 

To investigate this possibility, the structure was 
redesigned for load indices of 1% of the original load indices, presented in Table 7 A. 
This is equivalent to increasing the length and depth of the truss by a factor of 10 
(i. e.  , I ■ 10(30)= 300, and h = 10 (15) = 150) while the loads on the truss remain 
unchanged. It should be noted that increasing the loads on the truss by a hundred- 
fold would result in the original load indices and in cross sections in titanium which 
are ten times those indicated in Table 9A. 

The design of the cross sections of the tension members 
would be identical to the original structure (Table 5) since the scaling factor does not 
change the magnitude of the loads in the members. 

The design of the compression members presented in 
Tables 8B and 9B illustrates the conclusion stated above.  The designs are lighter 
in titanium for the load condition 800°F (which still designs the members) but heavier 
for the load conditions at 900°F and 1000* F.     The weight ratios are presented in Table 

3/5 8C and are in excellent agreement with the /o/(ER)       ratio. 
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TABLE  8B - STRESSES AND WEIGHTS 

Material 
Msmber 

U2-Ul U2"U3 |  Ul " Ll ,  U2"L2     | 

Titanium^ 

Min. Wt. 
800° F 

= .160) 
(1) 0.293 0.075 0.073 0.061 

«r/<r0(Fig. 6<2>) 

»or ■ <&<«r/^ 

5.29 3.02 7.32 6.81 

cr   = 5000 o 2o,500 15,100 36,600 34,000 

900° F 

A = tPAr„ 

W = A/> 

6.80 3.02 1.23 1.10 

|0.483|| |0.1971| 10^176 

»/•r (pig. 6(2>) 4.35 2.49 6.02 5. 59 

<rQ - 5200 

1000°F 

<r     = a    (<r/o' ) 
cr       o x       o' 

A = rP/cr 
W = A/>   Cr 

22,600 

6.76 
1.08 

12,950 

2.99 
0.479 

31,300 

1.22 
0.195 

29,100 

1.10 
0.175 

cr/cro(Fig.  6<2>) 3.67 2.10 5.08 4. 72 

<r   =5250 
0 *cr=<r0

(<r/(To> 19,300 11,000 26,700 24,800 

A=rP/o-cr 

W = A/> Cr 
6.54 
1.05 

2.89 
0.463 

1.18 
0.189 

1. 06 
0.169     | 

17-7PH St. Steel (p= .276) 

Min. Wt. 

800°F 

(1) 

<r/*0 (Fig. 6<2>) 
0.414 0.105 0.104 0.086 
4.98 2.85 6.70 6.41     j 

a  = 9000 
0 

900°F 

A=rP/crcr 

W = A/> 

44,800 

4.01 

25,600 

1.78 

l 30,300 

6.746 

57,700 

0.650 

li-iil 10.4911 [0.2061 10.1801 

<r/cro(Fig. 6(2)) 4.61 2.64 6.39 5. 93 

o-  = 8800 cr       o x       o' 40,600 23,200 56,200 52,200     | 

1000°F 

A=rP/or 
W = A/>cr 

3.77 
1.04 

1.67 
0.461 

0.681 
0.188 

0.610 
0.168 

o-/cro((Fig 6)(2)) 4.29 2.45 5.94 5. 52 

o-  = 8200 
*cr =°b <a/<ro> 35,200 20,100 48,700 45,300 

A = rP/cr 
W=A/> Cr 

3.58 
0.988 

1.59 
0.438 

0.646 
0.178 

0.580 
0.160 

(1) Table 8A; (2) Pß = 0. 01PA 

Design weight for each material (maximum) 
Optimum design weight for both materials (minimax) 
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TABLE 8C - RATIOS OF WTITANnjM/WST_ ST£EL 

Temp. Weight Ratios of Members 
Theoretical 

Ratios 

PT /ERS\3/5 

P* \ERT/ U2-Ul U2"U3 Ul-Ll U2"L2 

800 F 0.983 0.984 0.955* 0.982 0.983 

900 F 1.04 1.04 1.04 1.04 1.025 

1000 F 1.06 1.06 1.06 1.06 1.067 

* The minimum weight design stress for this member in 17-7PH Steel is slightly 
in the plastic range.   This reduces the ratio below that of the theoritical value. 
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III 

B. WING PORTION 

A design of a wing section is appropriate since aerospace vehicles still require 
wings for aerodynamic operations during exit and reentry into an atmosphere. 

1. STRUCTURE 

A typical type of wing construction for an aerospace vehicle is shown in 
Figure 24 in which great care has been exercised to minimize thermal stresses.   Dif- 
ferential expansion between the covers is accommodated by expansion strips (Sec. A-A). 
The vertical airloads are carried by beam action in the corrugated covers to the cor- 
rugated spar webs by means of vertical strips.   The shear loads due to torsion of the 
wing box are carried to the truss ribs by a single pin tie in each cover.   The depth of 
the continuous spar caps and truss members are kept to a minimum to reduce any 
stresses due to thermal gradients.   The spar webs are corrugated to permit differ- 
ential expansions between the webs and the covers or spar caps. 

Typical elements of each type of construction will be designed for two 
kinds of aerospace missions considering several feasible materials. 

2. UNIT SOLUTIONS 

An analysis of the structure shown in Figure 24 for a pressure of 1 psf 
on the bottom cover has been performed and the results are summarized below. 

a. Bending Moment in Covers 

M per psf - 1.39 in. lb/in. 

b. Spar No. 1 

The shear load (Q) acting upon the spar increases linearly while 
the moment (M) increases parabolically.   Since the beam is of constant depth (assumed 
to be 22 inches), the load (P) in the spar caps also increases parabolically.   The max- 
imum values occur at the root and are noted as follows: 

Q = 20.6 lb. per psf 

M= 1800 in. lb. per psf 

P= 81.9 lb. per psf 

c. Rib Truss 

The loads in the truss members were computed for a cover load 
of 1 psf and are shown in the sketch on page 97. 
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DETAIL-A 

- I ll 

EXPANSION 
STRAP STRAP —v 

\ r FLOATING 
t \ /   STRAP 

CORRUGATED 
PLATE 

SPAR   CAP 

STRIPS   TIEING  COVER 
TO CORRUGATED WEBS 

CORRUGATED 
WEB  OF SPAR 

SECTION   A-A 
(SPAR) 

SECTION  B-B (COVER) 

CORRUGATED 
SHEAR   WEB 

SECTION C-C(SHEAR WEB) 

Figure 24.   Wing Structure 
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3. ENVIRONMENTAL HISTORY 

In order to provide a reasonably representative spectrum of flight ex- 
periences upon which to base the design technique demonstration, two orbital mission 
profiles have been delineated.   Each profile defines a possible history of exit from and 
reentry to the sensible atmosphere but is significantly different during both exit and 
reentryphases in respect to the speed-altitude-time relationship.   Basically, the flight 
patterns assumed are compatible with the concept of a vehicle having aerodynamic lift 
and maneuver capabilities derived from highly swept wing surfaces.   The exit profiles 
adopted show the differences in mechanical and heat loading experiences which can 
exist when the speed-altitude histories are such that in one case relatively high altitude 
is attained at relatively low speed (Mission 2) by the use of aerodynamic lift, whereas, 
in the other case (Mission 1) the speed-altitude history is characterized by significantly 
higher speed at any altitude.   For the reentry phase, Mission 2 represents a global 
range, lift modulated, flight path requiring approximately a two hour time lapse, where- 
as Mission 1 is based upon a constant high angle of attack equilibrium glide flight path 
for which the time from reentry initiation is one hour. 

It has to be emphasized that the mission experiences described herein 
are not representative of maximum severity flight conditions which could be encountered 
in mission abort circumstances, extreme short range reentries, or reentries requiring 
pullup and/or out of plane maneuvers.   However, the two hypothetical profiles are 
deemed entirely adequate as a spectrum of inputs for structural design procedure 
demonstration. 

The equilibrium temperatures and pressures acting in a region remote 
from the leading edge were calculated from the appropriate speed, altitude and angle 
of attack parameters based upon flat plate, turbulent flow theory.   Temperature dis- 
tributions on a continuous time base were then estimated for an analogous uninsulated 
thermodynamic structure representative of the corrugated covers, spars, and truss 
x ibs.   To a certain extent the results obtained from a direct electric analog computer 
for an essentially similar structure subjected to the reentry environment of Mission 2 
were employed.   The analog set-up was based upon a heat energy exchange in which 
the aerodynamic heat input is continuously balanced by conduction, absorption, and 
radiation actions by the structural elements.   The technique and thermodynamic equa- 
tions used are fully described in Reference 22. 
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The results of this study can then be represented on graphs which depict 
the pressure and temperature histories of each element.   A conservative step history, 
in which the temperature and pressure is never less than the actual, is then employed 
to design the structure with a finite number of loading conditions.   The time intervals 
are selected so as to be large in regions of temperature and load which will not signifi- 
cantly affect the design and to be small in regions,of significant temperature or load. 
The technique is illustrated for Mission 1 in Figures 25a and 25b.   The design loading 
conditions for Missions 1 and 2 are summarized in Tables 10A and 10B for the lower 
cover and the lower and upper cap materials.   The temperature of the upper cap was 
estimated to be approximately 85 percent of the temperature of the lower cap. 

The value of r represents the ratio of the load (or stress) in a given 
time interval to the load (or stress) in the interval which would determine the short- 
time strength.   This is determined by examining the lpad and temperature intervals 
and the available materials (chosen so that they do not depreciate appreciably in the 
required thermal environment).   The reference condition (r = 1) for Mission 1 is 
characterized by a very high loading at a moderate temperature (exit).   Relatively 
low loadings exist at the higher temperatures (reentry).   The reference condition for 
Mission 2 is characterized by a relatively high load at a relatively high temperature 
during reentry. 

4. MATERIAL SELECTION 

A survey of the temperature and the load ratios on the lower covers 
and caps indicated that the refractory materials (TZM molybdenum and FS-85 colum- 
bium) would be satisfactory but that the superalloys (Rene  41, etc.) would be un- 
satisfactory because of poor creep strength at the exposure temperatures.   Prelimi- 
nary calculations, employing Figure 3b, indicated that a Rene  41 lower cap designed 
for extremely low stresses would still creep excessively with each mission.   Thus the 
design of the lower cap in Rene  41 would be much heavier than a design in TZM or 
FS-85. 

The refractory alloys TZM and FS-85 did not indicate any significant 
tendency to creep even when the maximum stress became two-thirds of the ultimate 
stress at the designing temperature (Figure 26). The creep was calculated with the 
aid of Figures 2 and 3b by assuming a maximum stress; computing the stress, creep 
rate, and incremental creep strains for each time interval; and accumulating these 
creep strains to obtain the total creep strain. 

TZM, FS-85 or Rene  41 can be employed in the~upper caps even though 
the creep of the Rene  41 is not insignificant.   A plot of the creep per mission (of an 
upper cap of Rene  41) as a ratio of the maximum stress to the ultimate stress is shown 
in Figure 27.   The design of the upper spar cap in Rene  41 indicates that the minimum 
weight design for 100 missions is determined by the stability (F.S. = 1.5) of the cap 
while it can be determined by the creep allowable (F.S. = 1.1) for 200 missions. 

The materials considered do not exhaust the possibilities; although they 
represent the extent of material data readily available to the author and serve to illus- 
trate the design technique. 
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TABLE 10A - TEMPERATURE-TIME HISTORY FOR MISSION 1 

TIME 
INCREMENT TEMPERATURE PRESSURE 

Hrs. 
Bottom Cover 

°F 
Bottom Cap 

°F 
Top Cap 

°F 
q 

psf 
r 

EXIT 

.333 580 500 425 199 .826 

.117 1175 1050 893 180 .747 

.0167 1175 1050 893 241 1.000 

.075 1340 1240 1054 241 1.000 

.0583 1540 1320 1122 128 .531 

.0833 1000 840 714 - - 

REENTRY 

.333 1295 1200 1020 3 .0124 

.233 1760 1700 1445 21 .0871 

.0667 2010 1890 1607 21 .0871 

.0333 2010 1950 1658 25 .104 

.0333 2010 1950 1658 29 .120 

.0333 1800 1720 1462 38 .158 

.0667 1800 1720 1462 44 .183 

.0667 1920 1800 1530 48 .199 

.133 1800 1700 1445 51 .212 
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TABLE lOB - TEMPERATURE-LOAD HISTORY FOR MISSION 2 

TIME 
INCREMENT 

TEMPERATURE PRESSURE 

Hrs. 
Bottom Cover 

°F 
Bottom Cap 

°F 
Top Cap 

°F 
q 

psf 
r 

EXIT 

.067 400 400 340 100 1.053 

.067 1270 960 816 100 1.053 

„067 1770 1610 1369 95 1.000 

.067 1770 1610 1369 76 .8 

.067 1770 1610 1369 58 .611 

.067 1770 1610 1369 40 .421 

.133 1640 1610 1369 27 .284 

.133 1560 1510 1284 - - 

.067 1470 1420 1207 - - 

.067 1100 1100 935 - - 

. 088 400 400 340 - - 

REENTRY 

.167 115 115 98 - - 

.1 1160 750 638 2.7 . 0284 

.083 830 750 638 2.7 .0284 

.183 925 830 706 2.7 .0284 

.183 1055 1020 867 2.7 .0284 

.183 1315 1230 1046 5.4 .0568 

.183 1530 1450 1233 5.4 .0568 

.183 1835 1670 1420 11.0 .116 

.55 1965 1780 1513 43.0 .453 

.183 1660 1530 1301 59.9 .631 
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Figure 26.   Ultimate Strength vs. Temperature 
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5. DESIGN OF STRUCTURAL COMPONENTS FOR MISSION 1 

a. Lower Cover 

1).        Design Condition (Figure 24, Section B-B) 

T  =   1340°F 

M =   241(1.39)  =  336 in. lb/in. (Limit Load) 

=  504 in. lb/in. (Ultimate Load) 

2). Material Data (Figures lb and 26) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

MatU P 
EA 

(Fig. lb) 
°"o 

(Fig.lb) 
log£ 

(Fig. lb) 
<^o>opt 

(Fig. 20) 
opt 

(6)x(4) 

a- u 
(Fig. 26) 

<r =<r /4.55* c      u 

TZM 

FS-85 

.369 

.380 

39, 000, 000 

19, 000, 000 

7700 

3200 

-3.1 

-6.1 

7.5 

[         13.5 

57,800 

43, 200 

89, 000 

57,000 

19,600 

12,500 

4. 55 -J^ =   ^    [Ref. Eq. (A-8f)l 
a ßÄ       • 18     L J 

3).        Design Configuration 

As indicated in the Appendix, the single face corrugation 
with the face in compression (0 = 90°, n = . 815, f = 4t) is more efficient than a double 
faced corrugation, especially if the optimum stress is below the ultimate stress of the 
material.   In addition, the double face corrugations will result in large deflections and 
in a thinner and smaller web which may become critical for the shear load which was 
not considered.   The corrugation with no faces would usually be most efficient since 
or      is generally greater than .37 c    (see Appendix) but cannot be employed since the opt u 
cover must have a smooth exterior. It should be noted, however, that a single faced corru- 
gation can resist only about 9 percent of the moment in the other direction [Eq. (A-10)1 , 

The design of single face corrugations is simplified in the 
fact that the compressive stress is usually elastic which results in linear design equa- 
tions (£     =o-/o»o). 

4). Design 

ASD-TDR-62-763 
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d = 
°6M 

a4c7 

t =  d 
CtEA 

p    o, 

1/2 

1/2 1/2 
1/2^1/2\1/2 

1   (79a) 
"572" 

a/2 

CtEA, 
(79b) 

where a_ =     .18 
D 

a,  =     .710 
4 

a     =  6.225 

and 

(see Appendix ) 

2                                                         2 
C    = -   and is assumed equal to 5 -      21.72 

12(1-1/ ) 12(l-y  ) 

The value of k =  24 corresponds to a plate in pure bending. This 
is probably conservative for a plate in bending and tension (for which no stability con- 
stants could be found).   Values of k for plates in bending and compression can be found 
in various texts (e.g., Table 36, Reference 1; Table 34, Reference 2; etc.). 

for TZM: 

and 

equation: 

A= —    -£- 48     EA A 

Substituting in Eqs. (79a) and (79b) results in the following design 

d =   1.168 

t   =     .00562 

A =   a   t= .035 

W =   Ap =   . 0129 

The deflection of the beam can be obtained from the following 

.2 
=   .398     (at ultimate load) (87a) 

V 
If the deflection is too large then the stress required to result 

in an acceptable deflection at ultimate load can be obtained by introducing Eq. (79a) 
into Eq. (87a) and by assuming that the compressive stress is elastic.   Solving for the 
stress results in 

a = 
48AMl/2E5/4a6

3/2 

4 

4/7 

(87b) 
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If the design has been completed and the deflection must be 
changed, then the following equations can be employed: 

■ ~® 

l'   -  d£\ 

U   4/7 
(88a) 

-3/7 
(88b) 

/A/   2/7 
t'   =  tj^-j (88c) 

< ■ tf. 

1.2/1 
j (88d) 

/A/  2/7 
and w' =  W(ii-) (88e) 

where the primed terms refer to the desired deflection and geometry. 

The design for FS-85 columbium utilizing Eqs. (79a) and (79b), 
results in 

d = 1.361 

t   = .0075 

A = .046 

and W = . 0175 > . 0129 

Thus TZM is more efficient.   This is to be expected since TZM has a higher modulus 
and allowable stress coupled with a lower density. 

It is interesting to compare designs of the cover as a double face 
or single face corrugation in TZM.   Utilizing the optimum stress of 57,800 psi corre- 
sponding to a a/o0 of 7.5, results in plastic stresses (£ = 9. 0 t 7. 5) and the following 
double face corrugation design: ^ 

d  = . 454 < 1.168 

t   = .004K. 00562 

A = 10. 225 (. 0041) = . 042 > . 035 

and A = 1.086 >. 398 
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Thus the double face corrugations weigh and deflect more than the single face.   Space 
requirements or significant negative moments may, however, favor the double face cor- 
rugations. 

b. Corrugated Spar Web (Figure 24, Section C-C) 

1).        Design Condition 

T =   1240°F (Highest Temp, at Lower End) 

Q  =   20.6 (241)  =  4960# limit 

=  7450# ultimate 

2).        Material Data (Figures lb and 26) 

Mat'l EA «To log/3 °-u 

TZM 40,300, 000 7950 - 3.2 91, 000 

|   FS-85 19,400, 000 3600 - 6.4 61, 000 

3).        Design Configuration 

A square corrugation (n = 1, 6 = 90°) was employed be- 
cause of fabrication considerations.   From Eqs. (46a through e) the following geometric 
constants are obtained: 

aio =  2 

a40 
=   .333 

G50 
=   .083 

a80 =1.000 

a90 
=   .765 

°7 =   f/t=0 

b =   22 in. 
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2 
and       C    = 

12(1- v2) 
{ö.o^k) - t±. oo   ^q.   too ui rveier enut; £t) 

4). Design 

From Eq. (44b) we have 

Q vT      (\°S>\" 
°b   s 

b
^ o a8 a9 .a

we\     'o    I 
* 7/8      o-    * 7/8 

Substituting the appropriate values for TZM molybdenum gives 

P =  49.3 

which results in 

a/cr   =   7.8   (Figure 11) 

and       £       =8.4  (Figure 12) 
s 

This indicates that the minimum weight design will result in a slightly plastic stress. 
As a check, 

(8.4)7/8 (7.8) ■  50 vs. 49.3  =  P  (slightly high but satisfactory) 

<r=   7.8(7950)  =   62,000 

From Eqs. (48a) we obtain 

* 7/8 
S      or 

a^ I — \ 
<EA Ct </* 

As a check, 

a t =   576 vs. 582  = -^^- 

EAct^\1/2 

d =  t I -^  =   .681 
*o€s 

A =   a1()t -   .0186 

W =   Ap    =   .00687 
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11 

Similarly, for FS-85 columbium: 

P  =   115      (Eq. 44b) 

a-/a-    =12.6        (Figure 11) 
o 

£    =12.6 (Figure 12) 
s 

The design stress is elastic. 

As a check,   (12.6)15/8 =   115 vs 115 = P 

The details of the design are 

o-   =  45,200 

t   =   .0130 (Eq. 48a) 

As a check, <r t ■  586 vs. 582 =  ° J^ 
b 

d    =   .770   (Eq. 48b) 

A   =   .026 

W   =   . 00988 > . 00687 

TZM is more efficient. 

If the area had to be modified by the factor x = a-/a , then in order to 

maintain the thickness ratio relationship of Eq. (43)   — =  ct    f —J       I     we obtain 

t'   = xt (89a) 

d'   = x"3/7d (89b) 

A'   = xA (89c) 

W' =  XW (89d) 
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c. Vertical Truss Member (U   - L , Fig. 24) 

1).        Design Conditions 

T  =   1240°F   (Highest Temperature at Lower End) 

P =   12.80(241) =   3090# Limit 

=  4630* Ultimate 

2).        Material Data 

The material properties are the same as those tabulated 
in Paragraph b. 2) above. 

3).        Design Configuration 

A bent up channel (t = h) was employed because of ease of 
procurement and fabrication.   The column was assumed to be able to buckle only in the 
plane of the truss because of the out-of-plane support supplied by the spar.   The ends 
were assumed to be pinned.   From Table 1, and the given geometry and boundary con- 
ditions, we obtain 

b    =  22 

ax =  1.333 

a3   -     .167 

Ch =     .388 w   =   z(t/h)d =   . 167 d 

4).        Design 

From Eq. (11a) we obtain 

From Figures 4, 5 and 6 we obtain 

<r/<r   =   8.6 (Figure 6) and a =  68,500 

£ =   12.0 (Figure 5) 

{ =   24. 0 (Figure 4) c 
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As a check,         £    £   '    =  719 vs. 760 = P 
a- c   p 
o 

The value of £   is difficult to read accurately in Figure 4 because log 0 is not a 
c 

negative integer.   A better estimate of the value of £    is obtained from £    = 
P C ° 
 r-rr =25.4.    A readjustment of o"/o-   and £   is not indicated because 
a    (£ )*'2 ° p 

*o       P 

of the small change in £ . 
c 

Employing Eqs. (3), (13d), (lie), and (7a) results in 

d =   1.41        (Eq. 3) 

w =     .235      (Eq. 13d) 

t   =     .0361    (Eq. lie) 

4630 
As a check, A^dt =  (1.333) (1.41) (.0361)   =   .0679 vs. .0676 =  g 6/795o)= P/(r 

W= A/D =   . 0025 

Similarly, for FS-85 columbium 

P      =  1850    (Eq. 11a) 

o-/<r    ■   15.3 (Figure 6) and a- =  55,200 
o 

£     =  18 (Figure 5) 

£     =  28 (Figure 4) 
c 

As a check, I—   t   £ -   1820 vs. 1850 =  P 

d =   1.43 (Eq. 3) 

w =     .238       (Eq. 13d) 

t   =     .0435     (Eq. lie) 
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As a check,   A = <» dt =   .0831 vs.  .0840 =      4^||| =   P/<r 

W = Ap    =   .00316 >   .0025 

TZM is more efficient. 

d. Spar Cap (Figure 24, Section A-A; Note:  Cap of Spar #1 is a single channel) 

1).        Design Condition 

T =   1054°F 

P„    L =   (81.9) (241)  =   19, 650# limit 
Root 

=   29, 500# ultimate 

where the load P increases parabolically due to a uniform load on the beam. 

2).        Material Data (Figures lb and 26) 

Mat'l EA ao log ß °"u 

TZM 

Rene» 41 

42, 500, 000 

24, 500, 000 

8000 

5600 

-3.4 

- 9.4 

96,000 

167, 000 

3).        Design Configuration 

A shallow bent-up channel was employed because of ease of pro- 
curement and fabrication and also to minimize thermal stresses due to thermal gradients. 
To illustrate the design technique it was decided to design the spar caps so they would 
not have any tendency to buckle in a plane parallel to the covers.   The spar caps can 
deflect to a limited degree in this direction before introducing any significant loads in 
the corrugation webs and covers.   Excessive lateral deflections would introduce loads 
which were not considered in the design of the corrugations.   The spar cap cannot 
buckle in the plane of the web because of the planar stiffness of the web. 

The geometry constants are 

=  96 in. 

a±    =   1.333 

a3    =     .167 

Ch   =      .388 
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C    =     3.62 

C    =27.3 
c 

C    =  C 
d c 8- ° 

Table 14 of Reference 1 for a fixed-free column of 
constant cross section with a parabolically increas- 
ing load. 

42 

w   =   z (t/h) d  =   . 167 d 

For TZM, 

P    =   755        (Eq.  11a) 

a/a    =   9.1    (Figure 6) 

£ =23.5    (Figure 4) 
c 

£        =12.5     (Figure 5) 

1/2 
As a check, (<r/cr ) £    £ 757 vs. 755  =  P 

o     c    p 

<r  =   (er/er ) o-    =   72800 
o     o 

d =  3.45 

t =     .088 

(Eq. 3) 

(Eq.  lie) 

As a check, A=a,dt =   .405 vs. .405 =  |f*|~   =   p/<r 
' 1 72,800 

W=   .1491 

For Rene  41, 

P =   309 (Eq. 11a) 

— =   £ ,   = (    =   14.6  elastic     (Figures 4, 5, and 6) 
o p 
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As a check, £   £ 1/2 = (14. 6)5/2 = 809 vs. 809 = P 
c    p 

<r    = 81,800 

d   = 3.00 (Eq. 3) 

w  =     .50 (Eq.  13d) 

t    =     .091 (Eq.  lie) 

29 500 
As a check     A = a    dt =   .364 vs. .361 = —'——- =   P/<r 

1 81,800 

W =  A/D  =      .1043 <  .1491 

Rene  41 is more efficient for a single mission. 

An analysis of the deterioration and creep data (Figures 3 and 27) 
of Rene  41 results in the following allowables: 

Number of Missions 

1 

(. 0894 hr. at 1658°F)* 

100 

(8.94 hrs. at 1658°F)t 

200 

(17.88 hrs. at 1658°F)t 

Short-Time t 
Strength - psi 
(F.S. = 1.5) 111,500 86,400 82,500 

Creep Strength 
(cc<.01)-psi 

(F.S. - 1.1) _ 91,500** | 67, 6001** 

Stability - psi 
(F.S. = 1.5) 81, 800 81, 800 81, 800 

1=1 

** 

Design condition 
It is assumed that the deterioration does not cause the stability stress to become 
significantly plastic. 
The environmental history of each mission (Table 10A) is equivalent to . 0894 
hour at 1658°F.   This is computed by converting each interval to an equivalent 
time at the reference temperature which would result in the same Larson- 
Miller Parameter. The deterioration is then obtained from Figure 3a. 
(167, 000 /F. S.)   (o7au) of Figure 27. 
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If the spar cap is to be designed for 100 missions or less, then 
the design described above is the most efficient.   For 200 missions, however, the area 
must be increased by the ratio 

x = |L|oo = 
67, 600 

For a column, the maintenance of thickness ratios is defined by 
Eqs. (86a, b, and c) and results in 

d'   =  xl/3 d - 3.196 (90a) 

t'   =  x2/3 t =    .103 (90b) 

A7   =   x A = 0.440 (90c) 

w' =  x W = . 1261 < . 1491 (90d) 

.'.    Rene1 41 is still the more efficient material for 200 missions. 

6. DESIGN OF STRUCTURAL COMPONENTS FOR MISSION 2 

Mission 2 can be analyzed in a similar manner.   It is obvious, however, 
that the TZM molybdenum will be more efficient than FS-85 for the lower structural 
elements (because the modulus and strength is higher and the density is lower than 
FS-85) while TZM and Rene  41 should be considered for the upper structural elements. 

a. Lower Cover in TZM 

For T      =   1770°F 

M     =   (1.5) (95) (139) = 198 in. #/in. ultimate 

E      =   33,000,000 (Figure lb) 

<r      =   6,700 (Figure lb) 

log/3=  - 3.0 (Figure lb) 

or     =   77,000 (Figure 26) 
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I I 

For a single face corrugation ( 0 =   90°, n = . 815, and f = 4t), we obtain from the 
appropriate equations 

<r      =   77,000/4.55= 16,900 

d   =   .785        (Eq. 79a) 

t    =   .00378    (Eq. 79b) 

A   =   .606        (Eq. 87a) 

If we wish to restrict our deflection at ultimate load to a maximum of . 4 inch, we 
modify our design by the use of Eqs. (88). 

<r    = {^e)        16'900 ■'13»350 

d'   =   (.661)"3/?    .785      =   .938 

t'    =   (.661)2/?      .00378  =   .00366 

b. Corrugation Web in TZM 

For     T     =   1610°F 

Q     =(1.5) (95) (20. 6) = 294W ultimate 

E        =   35,000,000       (Figure lb) 

a       =   7200 (Figure lb) 

logjS =  - 3.0 (Figure lb) 

<r        =   81,000 (Figure 26) 

we obtain for a corrugated web ( 9 = - 90% n = 1. 0). 

P =   20.7 (Eq. 44b) 

-=- =   £ = 5.05 (Figures 11 and 12) wo s 
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As a check, -^- Cj      = (5.05)15/8 - 20. 7 vs 20. 7 - P 

t = ba, 
s o 

17/8 

EACt^" 

- .0064   (Eq. 48a) 

As a check,  er t = 232 vs. 231 = 

d   =    t 
^EACt^ 

,    o    s 

b 

1/2 

=   .570      (Eq. 48b) 

c. Vertical Truss Member U, - hA in TZM 
 4       4  

For   T  =   1610°F 

P    =   (1.5) (95) (12.80)  =   1825#   ultimate 

and the same material properties reported in b above, we obtained for a bent-up 
channel 

P      =   311 (Eq.  11a) 

—   =   7.5 (Figure 6) 
cr 

o 

<r     =   54,000 

£     =    14 (Figure 4) c 

i     =9.3 (Figure 5) 

1/2 
As a check, (cr/cr ) £   <t =   319 vs. 311  = 9 *       o     c    p 

with resulting detail geometry 

d =  b 
C    cr 

c    o 

d    A 

1/2 

=   1.06 (Eq.  3) 
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t --- dl 
.CtEA 

1/2 

=   .0243 

As a check, A =   «    td -   .0344 vs. .0336 

(Fq.  lie) 

1825 
54,000 

modifying the value of £   results in a better agreement: 

=   P/cr 

*c      \319/ 
14  =   13.6 

d     =1.045 

t'    =     .0239 

(Eq. 3) 

(Eq.  lie) 

and A*   =a   dY=   .0334 vs.  .0336  -   P/cr 

d. Spar Cap 

For  T  =   1370°F 

P =   (1.5) (81.9) (95)  =   11,680#   ultimate 

and the following material properties (Figures lb and 26). 

Mat'l EA °"o log ß 
% 

TZM 

Rene1 41 

39, 000, 000 

20, 500, 000 

7600 

6500 

- 3.1 

- 6.5 

87,000    | 

140, 000 

For TZM 

P =   286 

o 
=   7.5 

<c 
=   13.0 

i =     9.0 

(Eq. 11a) 

(Figure 6) 

(Figure 4) 

(Figure 5) 
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1/2 - 
As a check, (cr/a ) £    { =292 vs. 286  =   P 

<r   =   57,000 

d   =   2.62 (Eq. 3) 

t    =     .0576 (Eq. lie) 

As a check,      A * a - dt -   .202 vs. .205  =   **' ~g =   P/cr 

W *  A/o   -   . 0755 

For Rene 41 

P     =   169 (Eq. 11a) 

g-   m   C    =   i    =  7.8     (Figures 4, 5, and 6) 
o C P 

As a check,      (cr/cr ) £    £  1/2  -   (7.8)5'2 -   169 vs 169  =   P 

<r    =   50,600 

d     =2.58 (Eq. 3) 

t     =     .0674 (Eq. lie) 

As a check,      A = a    dt =   .232 vs. .231 =   **' ||j! =  P/cr 
1 50,600 

W =  A/o  =   .0668 < .0755   (Rene  41 more efficient for one mission). 

An analysis of the deterioration and creep data (Figures 3 and 27) of 
Rene1 41 results in the following allowables. 
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Number of Missions 

1 

(.571 hr. atl513°F) 

100 

(57.1 hrs. at 1513°F) 

200 

(114.2 hrs. at 1513°F) 

Short-Time * 
Strength-psi 
(F.S. = 1.5) 93,500 83,500 80,500                  j 

Creep Strength 
(€c< .01)-psi 

(F.S.= 1.1) 56,000 A 43,200* 
A                i 

Stability 50,600 50, 600 50,600 

CZID    Design Condition 
* The environmental history of each mission (Table 10B) is equivalent to . 571 

hour at 1513°F.   This is computed by converting each interval to an equivalent 
time at the reference temperature which would result in the same Larson-Mill er 
Parameter.    The deterioration's then obtained from Figure 3a. 

* For 100 missions or less, Rene  41 is more efficient.   For 200 missions the 

TZM becomes more efficient since .0668 (|r4gg)   =   -0784 > .0755. 

A     (140, 000/F. S.)   (o/au) of Figure 27. 
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APPENDIX 

A. pPTIMUM GEOMETRY FOR CORRUGATIONS 

The solution for the minimum weight design requires expressing the geometric 
properties .of the cross section in terms of the web thickness and depth.   Section n C2 
defined the geometric properties of the cross section in terms of the corrugation angle 
(Q) and the flat ratio (n) as well as the face thickness (f), the web thickness (t), and 
depth (d).   The determination of the variables n and 8 are often dictated by fabrication 
requirements (available dies, necessary bend radii and joining flats).   In these cases 
it is a relatively simple matter to compute the geometric properties in terms of the web 
thickness and depth geqs. (26), (31), (32), (46), (47) and (51)]by utilizing the requirement that 
the faces buckle simultaneously with the web.   If the selection of Q and/or n is left to 
the discretion of the designer, he has to employ additional relationships to determine 
the optimum area distribution.   Panels in compression and shear are considered sep- 
arately from corrugations in bending. 

B. CORRUGATED PANELS IN COMPRESSION OR SHEAR 

For corrugations in compression or shear the value of n is usually made as 
small as possible consistent with fabrication requirements, even though the design 
equations would indicate that a large n is more efficient.   This is done primarily to 
satisfy the assumptions that the flats are more stable than the webs and that the 
structure is sufficiently stiff in transverse shear to permit ignoring the shear energy 
of distortion.   The applicability of the design equations is based upon the hypothesis 
that the corrugations can act in a manner similar to the sandwich core, but with a 
relatively large shear stiffness.   Thus the corrugations must have an adequate axial 
stiffness to force nodes in the faces and a shear stiffness which will ensure that the 
value of 

P       /P       ofEq. (59) 
crm    crs o 

[approximately 2 (1 +v ) Ka^ (n sin^g+ C°sg)(|-)     for double faced 

corrugations]   would be insignificant.     Since the axial and shear stiffnesses of the 
corrugations decrease with increasing n and decreasing $ , it is questionable whether 
the design equations presented in this report are satisfactory for large n or small 9 . 
Additional studies are recommended to derive more general minimum weight design 
procedures which will not limit the range of variations in the geometric parameters. 

Assuming that n should be made as small as possible, it is still necessary to 
establish the value of Q which will minimize the weight for given values of n.   The 
technique employed is to express the weight of the corrugated structures with one, 
two, or no faces as a function of n, Q , and the stability parameter (£).   If the weight 
is to be a minimum, then the function must be stationary.   The stability parameter, 
or the equivalent stability ratio (d/b), should be stationary in order to maximize the 
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design stress (which minimizes the weight).   If n is given, then the variation of the 
weight is proportional to the partial derivative of the weight function with respect to 
6 times the variation in 6, i.e., 

80 (A-l) 

Thus the weight of the structure would be a minimum when the variation of the 
weight with respect to the angle became stationary.   In the cases investigated, the 
weight is directly proportional to a power of the thickness ratio and some complex 
function of n and Q .   Plotting this function for given values of n and variable Q would 
indicate the value of Q which will minimize the weight.   The results of such an in- 
vestigation are summarized in Figures A-la and b and A-2a and b which present the 
optimum fabrication angle (Q) as a function of the flat ratio n for corrugation panels 
with one, two, or no faces in edge compression or shear and with relative edge fixity 

values of vC~/C    =   1 or 1.14.   The value of 
L        I 

1.14 was obtained from 

Figure 5a of Reference 20, for the value of (tVb )/(t /b )  = 1 / [2 cos 6 (t /tjUl.14 

which indicated an equal stability of the corrugation and faces where the end fixities 
were calculated from the moment distribution at the junctions. 

The technique for obtaining the weight function is indicated for a double faced 
corrugation in compression and summarized for the shear load and for the other types 
of configurations in compression or shear. 

The weight per inch of structure is 

W =  Abp   =   a1tbp 

2 
Dividing by b p results in a nondimensional equation 

dr = ai(r)= ai(^) (F) 

(A-2a) 

(A-2b) 

Equation (27c) can be manipulated to express t/d as a function of (d/b), i.e., 

d 
'[(■.%r*ji 

ij    sin    Q 

1/2 

(4) 
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Figure A-la.   Optimum Fabrication Angle for Corrugation Panels in Compression \*/CjC* = 1 ) 
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Figure A-lb.   Optimum Fabrication Angle for Corrugation Panels in Compression (^C/Cf = 1- 14 ' 
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Figure A-2a.   Optimum Fabrication Angle for Corrugation Panels in Shear(   >fc\/Cf = l) 
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Figure A-2b.   Optimum Fabrication Angle for Corrugation Panels in Shear (Vc /Cf = 1. 14 ) 
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Substituting Eq. (A-2c) into Eq.  (A-2b) results in 

W 

b2, 

Thus a plot of 

°1 4^1% + °5 1/2 A 

I") 
1/2 

W 

sin    £ 
given values of n will indicate the value of 0 which would minimize vV. 

b 2p K1/2(d/b)2 

(A-2d) 

as a function of 6 for 

Similarly, for single-face or no-face corrugations in compression, we obtain, 
with the aid of Eq. (34), 

W K    /^M/d' 
u2 C      I      .   2A b p t    \  sin    £ •)(*)' 

and 
W   m ^Jl 

b% (K/C ) (d/b)3 sin2 6 

(A-3a) 

(A-3b) 

For single-face or no-face corrugations in shear we obtain, with the aid of 
Eq. (43), 

and 

W «l  
u2      L   /     x4/3 
" ' (•») 

(!) 

7/3 
(A-4a) 

W 
2    ..,.,7/3       /     \4/3 

b /> (d/b) 
(■.)' 

(A-4b) 

Similarly, for double-face corrugations in shear we obtain with the aid of 
Eq. (50), 

W 

b, "2-(4T (A-5a) 

and 

W 

b2/o(d/b)2 a9 
(A-5b) 
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C. CORRUGATED BEAMS 

In order to maximize the section modulus (i/c), it is desirable to place as 
much materied as possible at the extreme fibers.   This is done most efficiently with 
a corrugation angle of 8 =   90°.   A smaller angle may be more efficient, however, 
for corrugations with no faces.   The smaller angle reduces the flat and web area 
per unit length, which is desirable for lightly loaded structures.   This reduced area 
is obtained at the expense of reducing the transverse shear area (which was ignored 
in the design).   Corrugations with faces tend to be most efficient at the maximum 
angle of 90° since smaller angles require thicker faces with larger areas.   Addi- 
tional studies in this area of Investigation are recommended. 

To increase the section modulus, the depth and flat ratio should be made as 
large as possible consistent with the requirements of stability. The optimum value 
of n can be determined by making the elements equally stable. It should be noted 
that the design criteria for beams assumed that the effects of transverse shear 
stresses were negligible. This was done because it would be difficult to assess the 
effect of the transverse shear stresses since they are not a fixed ratio of the bend- 
ing stresses. 

For corrugations with no faces, the value of n is obtained by equating the 
stability of the flat to the stability of the web. 

ch (4) - ct (i) <A-6a> 
and 

/C /c \1/2 

n =    f   h'   tl (A-6b) 

IfCL/C    =   3.62/21.72 =   1/6, then 
n    t 

n= 0.408 (A-6c) 

For corrugation with one or two faces, the values of (f/t) and n are obtained 
by equating the stability of the flat to the stability of the face and the web. 

Assuming that the joining of the flat to the face results in a node, we obtain for 
equal stability of flat and face 

2 

'f \2nd/ -(is)   =ch Ü7i) <A'7a> 

-   4 if the end fixities of the face and flat panels are assumed equal(Cf=C,). 
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Multiple attachments of face to corrugation flat or beads in the face can in- 
crease the stability of the face and is equivalent to increasing the value of C . 

Equal stability of flat and web results in 

2 , . v2 
Ch(nd/2;     "   Ct(dj 

=   0.815, iiCh/Ct =   1/6 

n  =   2| 

Stiffening of the web (e.g., beads) or flat (e.g., multiple attachments) will increase 
the values of C   or C, . 

t n 

The above values of n anf f/t result in the following geometric properties for 
corrugation beams: 

For no faces, Eq. (32) with n = 0.408 becomes 

a      =   3.40 (A-8a) 

a40 =   0.452 (A-8b) 

a60 =   0.50 (A-8c) 

For one face, Eq. (31) with n = 0. 815 and f/t = 4 becomes 

o11  =   6.225 (A-8d) 

<*4i  =   0.710 (A-8e) 

a       =   0.82 (tension) or 0.18 (compression) (A-8f) 

For two faces, Eq. (26) with n = 0. 815 and f/t = 4 becomes 

ai2   =   10.225 (A-8g) 

a42  =     2.352 (A-8h) 

<*62  =     0.50 (A-8i) 
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Manipulation of Eq. (74a), (79a), and (79b) and (79d) results in the following 
expression for the weight of the corrugation in terms of the geometric and material 
factors, the applied moment,  and the design stress: 

>f(^-^i 
If the corrugations are designed for the same compressive stress, then the 

one-face corrugation in compression would be the most efficient since 

1/2 

a ( — )       =   3.15 (one face) < 3. 58 (no face) < 4. 70 (two faces) (A-9b) 

In general, however, the design compressive stress for the no-face and two-face cor- 
rugations is usually higher than that employed for tho one-face corrugation (<rn    = 

°"o   £ °"i*   fi?i  /aciJ  ~ 'u/4'55)» anc* the relative efficiencies are not as great. Jc It      61c     6 It It 
The no-face corrugation can become more efficient for an elastic design compressive 
stress of 

a10^a60/a40 \ a61c 

an^W^/      61t 
£   .37 a. 

times the allowable tensile stress.   The double-face corrugation approaches but never 
attains the efficiency of the single-face corrugation as the optimum compressive stress 
approaches the allowable tensile stress.   The higher tensile stress plus the plasticity 
of the material results in a heavier double corrugation. 

The single-face corrugation has, however, a serious shortcoming.   The max- 
imum moment that can be resisted with the face in tension (M-) is significantly lower 
than the moment with the face in compression (M+).   This is because of the higher 
compressive stress caused by the larger extreme fiber distance, and because of the 
lower stability of the web caused by the larger region of compressive stresses, i.e., 

^8    (0.905)   (9.5)^ 
0.82    (0.905)   (24) K ' 

Thus, one-face corrugations are usually more efficient (lighter and stiffer) than 
two-face corrugations provided that the negative moment is relatively small and the 
depth is not limited. 
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